GAVS’ commitment during COVID-19

MARCH 23. 2020

Dear Client leaders & Partners,

I do hope all of you, your family and colleagues are keeping good health, as we are wading through this existential crisis of COVID 19.

This is the time for shared vulnerabilities and in all humility, we want to thank you for your business and continued trust. For us, the well being of our employees and the continuity of clients’ operations are our key focus. 

I am especially inspired by my GAVS colleagues who are supporting some of the healthcare providers in NYC. The GAVS leaders truly believe that they are integral members of these  institutions and it is incumbent upon them to support our Healthcare clients during these trying times.

We would like to confirm that 100% of our client operations are continuing without any interruptions and 100% of our offshore employees are successfully executing their responsibilities remotely using GAVS ZDesk, Skype, collaborating through online Azure ALM Agile Portal. GAVS ZIF customers are 100% supported 24X7 through ROTA schedule & fall back mechanism as a backup.

Most of GAVS Customer Success Managers, Client Representative Leaders, and Corporate Leaders have reached out to you with GAVS Business Continuity Plan and the approach that we have adopted to address the present crisis. We have put communication, governance, and rigor in place for client support and monitoring.  

GAVS is also reaching out to communities and hospitals as a part of our Corporate Social Responsibility.  

We have got some approvals from the local Chennai police authorities in Chennai to support the movement of our leaders from and to the GAVS facility and we have, through US India Strategic Partnership Forum applied for GAVS to be considered an Essential Service Provider in India.  

I have always maintained that GAVS is an IT Service concierge to all of our clients and we individually as leaders and members of GAVS are committed to our clients. We shall also ensure that our employees are safe. 

Thank you, 

Sumit Ganguli
GAVS Technologies

The Hands that rock the cradle, also crack the code

It was an unguarded moment for my church-going, straight-laced handyman & landscaper, “ I am not sure if I am ready to trust a woman leader”, and finally the loss of first woman Presidential candidate in the US, that led me to ruminate about Women and Leadership and indulge in my most “ time suck” activities, google and peruse through Wikipedia.

I had known about this, but I was fascinated to reconfirm that the first programmer in the world was a woman, and daughter of the famed poet, Lord Byron, no less. The first Programmer in the World, Augusta Ada King-Noel, Countess of Lovelace nee Byron; was born in 1815 and was the only legitimate child of the poet laureate, Lord Byron and his wife Annabella. A month after Ada was born, Byron separated from his wife and forever left England. Ada’s mother remained bitter towards Lord Byron and promoted Ada’s interest in mathematics and logic in an effort to prevent her from developing what she saw as the insanity seen in her father.

Ada grew up being trained and tutored by famous mathematicians and scientists. She established a relationship with various scientists and authors, like Charles Dickens, etc..   Ada described her approach as “poetical science”[6] and herself as an “Analyst & Metaphysician”.

As a teenager, Ada’s prodigious mathematical talents, led her to have British mathematician Charles Babbage, as her mentor. By then Babbage had become very famous and had come to be known as ‘the father of computers’. Babbage was reputed to have developed the Analytical Engine. Between 1842 and 1843, Ada translated an article on the Analytical Engine, which she supplemented with an elaborate set of notes, simply called Notes. These notes contain what many consider to be the first computer program—that is, an algorithm designed to be carried out by a machine. As a result, she is often regarded as the first computer programmer. Ada died at a very young age of 36.

As an ode to her, the mathematical program used in the Defense Industry has been named Ada. And to celebrate our first Programmer, the second Tuesday of October has been named Ada Lovelace Day. ALD celebrates the achievement of women in Science, Technology and Engineering and Math (STEM). It aims to increase the profile of women in STEM and, in doing so, create new role models who will encourage more girls into STEM careers and support women already working in STEM.

Most of us applauded Benedict Cumberbatch’s turn as Alan Turing in the movie,  Imitation Game. We got to know about the contribution, that Alan Turning and his code breaking team at the Bletchley Park, played in singularly cracking the German Enigma code and how the code helped them to proactively know when the Germans were about to attack the Allied sites and in the process could conduct preemptive strikes. In the movie, Kiera Knightly played the role of Joan Clark Joan was an English code-breaker at the British Intelligence wing, MI5, at Bletchley Park during the World War II. She was appointed a Member of the Order of the British Empire (MBE) in 1947, because of the important part she essayed in decoding the famed German Enigma code along with Alan Turing and the team.

Joan Clark attended Cambridge University with a scholarship and there she gained a double first degree in mathematics. But the irony of it all was that she was denied a full degree, as till 1948, Cambridge only awarded degrees to men. The head of the Code-breakers group, Hugh Alexander,  described her as “one of the best in the section”, yet while promoting Joan Clark, they had initially given her a job title of a typist, as women were not allowed to be a Crypto Analyst. Clarke became deputy head of British Intelligence unit, Hut 8 in 1944.  She was paid less than the men and in the later years she believed that she was prevented from progressing further because of her gender.

In World War II the  US Army was tasked with a Herculean job to calculate the trajectories of ballistic missiles. The problem was that each equation took 30 hours to complete, and the Army needed thousands of them. So the Army, started to recruit every mathematician they could find. They placed ads in newspapers;  first in Philadelphia, then in New York City, then in far out west in places like Missouri, seeking women “computers” who could hand-compute the equations using mechanical desktop calculators. The selected applicants would be stationed at the  University of Pennsylvania in Philly. At the height of this program, the US Army employed more than 100 women calculators. One of the last women to join the team was a farm girl named Jean Jennings. To support the project, the US Army-funded an experimental project to automate the trajectory calculations. Engineers John Presper Eckert and John W. Mauchly, who are often termed as the Inventors of Mainframe computers, began designing the Electronic Numerical Integrator and Computer, or ENIAC as it was called.  That experimenting paid off: The 80-foot long, 8-foot tall, black metal behemoth, which contained hundreds of wires, 18,000 vacuum tubes, 40 8-foot cables, and 3000 switches, would become the first all-electric computer called ENIAC.

When the ENIAC was nearing completion in the spring of 1945, the US Army randomly selected six women, computer programmers,  out of the 100 or so workers and tasked them with programming the ENIAC. The engineers handed the women the logistical diagrams of ENIAC’s 40 panels and the women learned from there. They had no programming languages or compilers. Their job was to program ENIAC to perform the firing table equations they knew so well.

The six women—Francis “Betty” Snyder Holberton, Betty “Jean” Jennings Bartik, Kathleen McNulty Mauchly Antonelli, Marlyn Wescoff Meltzer, Ruth Lichterman Teitelbaum, and Frances Bilas Spence—had no documentation and no schematics to work with.

There was no language, no operating system, the women had to figure out what the computer was, how to interface with it, and then break down a complicated mathematical problem into very small steps that the ENIAC could then perform.  They physically hand-wired the machine,  using switches, cables, and digit trays to route data and program pulses. This might have been a very complicated and arduous task. The ballistic calculations went from taking 30 hours to complete by hand to taking mere seconds to complete on the ENIAC.

Unfortunately, ENIAC was not completed in time, hence could not be used during World War II. But 6 months after the end of the war, on February 14, 1946 The ENIAC was announced as a modern marvel in the US. There was praise and publicity for the Moore School of Electrical Engineering at the University of Pennsylvania, Eckert and Mauchly were heralded as geniuses. However, none of the key programmers, all the women were not introduced in the event. Some of the women appeared in photographs later, but everyone assumed they were just models, perfunctorily placed to embellish the photograph.

After the war, the government ran a campaign asking women to leave their jobs at the factories and the farms so returning soldiers could have their old jobs back. Most women did, leaving careers in the 1940s and 1950s and perforce were required to become homemakers. Unfortunately, none of the returning soldiers knew how to program the ENIAC.

All of these women programmers had gone to college at a time when most men in this country didn’t even go to college. So the Army strongly encouraged them to stay, and for the most part, they did, becoming the first professional programmers, the first teachers of modern programming, and the inventors of tools that paved the way for modern software.

The Army opened the ENIAC up to perform other types of non-military calculations after the war and Betty Holberton and Jean Jennings converted it to a stored-program machine. Betty went on to invent the first sort routine and help design the first commercial computers, the UNIVAC and the BINAC, alongside Jean. These were the first mainframe computers in the world.

Today the Indian IT  industry is at $ 160 B and is at 7.7 %age of the Indian GDP and employs approximately 2.5 Million direct employees and a very high percentage of them are women. Ginni Rommeti, Meg Whitman are the CEOs of IBM and HP while Sheryl Sandberg is the COO of Facebook. They along with Padmasree Warrior, ex CTO of CISCO have been able to crack the glass ceiling.    India boasts of Senior Leadership in leading IT companies like Facebook, IBM, CapGemini, HP, Intel  etc.. who happen to be women. At our company, GAVS, we are making an effort to put in policies, practices, culture that attract, retain, and nurture women leaders in IT. The IT industry can definitely be a major change agent in terms of employing a large segment of women in India and can be a transformative force for new vibrant India. We must be having our Indian Ada, Joan, Jean and Betty and they are working at ISRO, at Bangalore and Sriharikota, at the Nuclear Plants at Tarapur.

ABOUT THE AUTHOR

Sumit Ganguli

Sumit Ganguli

Understanding Reinforcement Learning in five minutes

Reinforcement learning (RL) is an area of Machine Learning (ML) that takes suitable actions to maximize rewards situations. The goal of reinforcement learning algorithms is to find the best possible action to take in a specific situation. Just like the human brain, it is rewarded for good choices and penalized for bad choices and learns from each choice. RL tries to mimic the way that humans learn new things, not from a teacher but via interaction with the environment. At the end, the RL learns to achieve a goal in an uncertain, potentially complex environment.

Understanding Reinforcement Learning

How does one learn cycling? How does a baby learn to walk? How do we become better at doing something with more practice? Let us explore learning to cycle to illustrate the idea behind RL.

Did somebody tell you how to cycle or gave you steps to follow? Or did you learn it by spending hours watching videos of people cycling? All these will surely give you an idea about cycling; but will it be enough to actually get you cycling? The answer is no. You learn to cycle only by cycling (action). Through trials and errors (practice), and going through all the positive experiences (positive reward) and negative experiences (negative rewards or punishments), before getting your balance and control right (maximum reward or best outcome). This analogy of how our brain learns cycling applies to reinforcement learning. Through trials, errors, and rewards, it finds the best course of action.

Components of Reinforcement Learning

The major components of RL are as detailed below:

  • Agent: Agent is the part of RL which takes actions, receives rewards for actions and gets a new environment state as a result of the action taken. In the cycling analogy, the agent is a human brain that decides what action to take and gets rewarded (falling is negative and riding is positive).
  • Environment: The environment represents the outside world (only relevant part of the world which the agent needs to know about to take actions) that interacts with agents. In the cycling analogy, the environment is the cycling track and the objects as seen by the rider.
  • State: State is the condition or position in which the agent is currently exhibiting or residing. In the cycling analogy, it will be the speed of cycle, tilting of the handle, tilting of the cycle, etc.
  • Action: What the agent does while interacting with the environment is referred to as action. In the cycling analogy, it will be to peddle harder (if the decision is to increase speed), apply brakes (if the decision is to reduce speed), tilt handle, tilt body, etc.
  • Rewards: Reward is an indicator to the agent on how good or bad the action taken was. In the cycling analogy, it can be +1 for not falling, -10 for hitting obstacles and -100 for falling, the reward for outcomes (+1, -10, -100) are defined while building the RL agent. Since the agent wants to maximize rewards, it avoids hitting and always tries to avoid falling.

Characteristics of Reinforcement Learning

Instead of simply scanning the datasets to find a mathematical equation that can reproduce historical outcomes like other Machine Learning techniques, reinforcement learning is focused on discovering the optimal actions that will lead to the desired outcome.

There are no supervisors to guide the model on how well it is doing. The RL agent gets a scalar reward and tries to figure out how good the action was.

Feedback is delayed. The agent gets an instant reward for action, however, the long-term effect of an action is known only later. Just like a move in chess may seem good at the time it is made, but may turn out to be a bad long term move as the game progress.

Time matters (sequential). People who are familiar with supervised and unsupervised learning will know that the sequence in which data is used for training does not matter for the outcome. However, for RL, since action and reward at current state influence future state and action, the time and sequence of data matters.

Action affects subsequent data RL agent receives.

Why Reinforcement Learning

The type of problems that reinforcement learning solves are simply beyond human capabilities. They are even beyond the solving capabilities of ML techniques. Besides, RL eliminates the need for data to learn, as the agent learns by interacting with the environment. This is a great advantage to solve problems where data availability or data collection is an issue.

Reinforcement Learning applications

RL is the darling of ML researchers now. It is advancing with incredible pace, to solve business and industrial problems and garnering a lot of attention due to its potential. Going forward, RL will be core to organizations’ AI strategies.

Reinforcement Learning at GAVS

Reinforcement Learning is core to GAVS’ AI strategy and is being actively pursued to power the IP led AIOps platform – Zero Incident FrameworkTM (ZIF). We had our first success on RL; developing an RL agent for automated log rotation in servers.

References:

Reinforcement Learning: An Introduction second edition by Richard S. Sutton and Andrew G. Barto

https://web.stanford.edu/class/psych209/Readings/SuttonBartoIPRLBook2ndEd.pdf

About the Author:

Gireesh Sreedhar KP

Gireesh is a part of the projects run in collaboration with IIT Madras for developing AI solutions and algorithms. His interest includes Data Science, Machine Learning, Financial markets, and Geo-politics. He believes that he is competing against himself to become better than who he was yesterday. He aspires to become a well-recognized subject matter expert in the field of Artificial Intelligence.

CCPA for Healthcare

The California Consumer Privacy Act (CCPA) is a state statute intended to enhance consumer protection and data privacy rights of the residents of California, United States. It is widely considered one of the most sweeping consumer privacy laws, giving Californians the strongest data privacy rights in the U.S.

The focus of this article is CCPA as it applies to Healthcare. Let’s take a quick look at what CCPA is and then move onto its relevance for Healthcare entities. CCPA is applicable to any for-profit organization – regardless of whether it physically operates out of California – that interacts with, does business with and/or collects, processes or monetizes personal information of California residents AND meets at least one of these criteria: has annual gross revenue in excess of $25 million USD; collects or transacts with the personal information of 50,000 or more California consumers, households, or devices; earns 50% or more of its annual revenue by monetizing such data. CCPA also empowers California consumers with the rights to complete ownership; control; and security of their personal information and imposes new stringent responsibilities on businesses to enable these rights for their consumers.

Impact on Healthcare Companies

Companies directly or indirectly involved in the healthcare sector and dealing with medical information are regulated by the Confidentiality of Medical Information Act (CMIA) and the Health Insurance Portability and Accountability Act (HIPAA). CCPA does not supersede these laws & does not apply to ‘Medical Information (MI)’ as defined by CMIA, or to ‘Protected Health Information (PHI)’ as defined by HIPAA. CCPA also excludes de- identified data and information collected by federally-funded clinical trials, since such research studies are regulated by the ‘Common Rule’.

The focus of the CCPA is ‘Personal Information (PI)’ which means information that “identifies, relates to, describes, is capable of being associated with, or could reasonably be linked, directly or indirectly, with a particular consumer or household.” PI refers to data including but not limited to personal identifiers such as name, address, phone numbers, email ids, social security number; personal details relating to education, employment, family, finances; biometric information, geolocation, consumer activity like purchase history, product preferences; internet activity.

So, if CCPA only regulates personal information, are healthcare companies that are already in compliance with CMIA and HIPAA safe? Is there anything else they need to do?

Well, there is a lot that needs to be done! This only implies that such companies should continue to comply with those rules when handling Medical Information as defined by the CMIA, or Protected Health Information, as defined by HIPAA. They will still need to adhere to CCPA regulations for personal data that is outside of MI and PHI. This will include

employee personal information routinely obtained and processed by the company’s HR; those collected from websites, health apps, health devices, events; clinical studies that are not funded by the federal government; information of a CCPA-covered entity that is handled by a non-profit affiliate, to give a few examples.

There are several possibilities – some not so apparent – even in healthcare entities, for personal data collection and handling that would fall under the purview of CCPA. They need to take stock of the different avenues through which they might be obtaining/handling such data and prioritize CCPA compliance. Else, with the stringent CCPA regulations, they could quickly find themselves embroiled in class action lawsuits (which by the way, do not require proof of damage to the plaintiff) in case of data breaches, or statutory penalties of up to $7500 for each violation.

The good news is that since CCPA carves out a significant chunk of data that healthcare companies/those involved in healthcare-related functions collect and process, entities that are already complying with HIPAA and CMIA are well into the CCPA compliance journey. A peek into the kind of data CMIA & HIPAA regulate will help gauge what other data needs to be taken care of.

CMIA protects the confidentiality of Medical Information (MI) which is “individually identifiable information, in electronic or physical form, in possession of or derived from a provider of health care, health care service plan, pharmaceutical company, or contractor regarding a patient’s medical history, mental or physical condition, or treatment.”

HIPAA regulates how healthcare providers, health plans, and healthcare clearinghouses, referred to as ‘covered entities’ can use and disclose Protected Health Information (PHI), and requires these entities to enable protection of data privacy. PHI refers to individually identifiable medical information such as medical records, medical bills, lab tests, scans and the like. This also covers PHI in electronic form(ePHI). The privacy and security rule of HIPAA is also applicable to ‘business associates’ who provide services to the ‘coveredentities’ that involve the use or disclosure of PHI.

Two other types of data that are CCPA exempt are Research Data & De-Identified Data. As mentioned above, the ‘Common Rule’ applies only to federally-funded research studies, and the CCPA does not provide much clarity on exemption status for data from clinical trials that are not federally-funded.

And, although the CCPA does not apply to de-identified data, the definitions of de-identified data of HIPAA and CCPA slightly differ which makes it quite likely that de-identified data by HIPAA standards may not qualify under CCPA standards and therefore would not be exempt from CCPA regulations.

Compliance Approach

Taking measures to ensure compliance with regulations is cumbersome and labour-intensive, especially with the constantly evolving regulatory environment. Using this opportunity for a proactive, well-thought-out approach for comprehensive enterprise-wide data security and governance will be strategically wise since it will minimize the need for policy and process rehaul with each new regulation.

The most crucial step is a thorough assessment of the following:

  • Policies, procedures, workflows, entities relating to/involved in data collection, sharing and processing, in order to arrive at clear enterprise-wide data mapping; to determine what data, data activities, data policies would fall under the scope of CCPA; and to identify gaps and decide on prioritized action items for compliance.
  • Business processes, contracts, terms of agreement with affiliates, partners and third-party entities the company does business with, to understand CCPA applicability. In some cases,

HIPAA and CMIA may be applicable to only the healthcare-related business units, subjecting other business units to CCPA compliance.

  • Current data handling methods, not just its privacy & security. CCPA dictates that companies need to have mechanisms put in place to cater to CCPA consumer right to request all information relating to the personal data collected about them, right to opt-out of sale of their data, right to have their data deleted by the organization (which will extend to 3rd parties doing business with this organization as well).

Consumer Consent Management

With CCPA giving full ownership and control of personal data back to its owners, consent management mechanisms become the pivot of a successful compliance strategy. An effective mechanism will ensure proper administration and enforcement of consumer authorizations.

Considering the limitations of current market solutions for data privacy and security, GAVS has come up with its Blockchain-based Rhodium Framework (pending patent) for Customer Master Data Management and Compliance with Data Privacy Laws like CCPA.

You can get more details on CCPA in general and GAVS’ solution for true CCPA Compliance in our White Paper, Blockchain Solution for CCPA Compliance.

READ ALSO OUR NEW UPDATES

Monitoring Microservices and Containers

Monitoring applications and infrastructure is a critical part of IT Operations. Among other things, monitoring provides alerts on failures, alerts on deteriorations that could potentially lead to failures, and performance data that can be analysed to gain insights. AI-led IT Ops Platforms like ZIF use such data from their monitoring component to deliver pattern recognition-based predictions and proactive remediation, leading to improved availability, system performance and hence better user experience.

The shift away from monolith applications towards microservices has posed a formidable challenge for monitoring tools. Let’s first take a quick look at what microservices are, to understand better the complications in monitoring them.

Monoliths vs Microservices

A single application(monolith) is split into a number of modular services called microservices, each of which typically caters to one capability of the application. These microservices are loosely coupled, can communicate with each other and can be deployed independently.

Quite likely the trigger for this architecture was the need for agility. Since microservices are stand-alone modules, they can follow their own build/deploy cycles enabling rapid scaling and deployments. They usually have a small codebase which aids easy maintainability and quick recovery from issues. The modularity of these microservices gives complete autonomy over the design, implementation and technology stack used to build them.

Microservices run inside containers that provide their execution environment. Although microservices could also be run in virtual machines(VMs), containers are preferred since they are comparatively lightweight as they share the host’s operating system, unlike VMs. Docker and CoreOS Rkt are a couple of commonly used container solutions while Kubernetes, Docker Swarm, and Apache Mesos are popular container orchestration platforms. The image below depicts microservices for hiring, performance appraisal, rewards & recognition, payroll, analytics and the like linked together to deliver the HR function.

Challenges in Monitoring Microservices and Containers

Since all good things come at a cost, you are probably wondering what it is here… well, the flip side to this evolutionary architecture is increased complexity! These are some contributing factors:

Exponential increase in the number of objects: With each application replaced by multiple microservices, 360-degree visibility and observability into all the services, their interdependencies, their containers/VMs, communication channels, workflows and the like can become very elusive. When one service goes down, the environment gets flooded with notifications not just from the service that is down, but from all services dependent on it as well. Sifting through this cascade of alerts, eliminating noise and zeroing in on the crux of the problem becomes a nightmare.

Shared Responsibility: Since processes are fragmented and the responsibility for their execution, like for instance a customer ordering a product online, is shared amongst the services, basic assumptions of traditional monitoring methods are challenged. The lack of a simple linear path, the need to collate data from different services for each process, inability to map a client request to a single transaction because of the number of services involved make performance tracking that much more difficult.

Design Differences: Due to the design/implementation autonomy that microservices enjoy, they could come with huge design differences, and implemented using different technology stacks. They might be using open source or third-party software that makes it difficult to instrument their code, which in turn affects their monitoring.

Elasticity and Transience: Elastic landscapes where infrastructure scales or collapses based on demand, instances appear & disappear dynamically, have changed the game for monitoring tools. They need to be updated to handle elastic environments, be container-aware and stay in-step with the provisioning layer. A couple of interesting aspects to handle are: recognizing the difference between an instance that is down versus an instance that is no longer available; data of instances that are no longer alive continue to have value for analysis of operational efficiency or past performance.

Mobility: This is another dimension of dynamic infra where objects don’t necessarily stay in the same place, they might be moved between data centers or clouds for better load balancing, maintenance needs or outages. The monitoring layer needs to arm itself with new strategies to handle moving targets.

Resource Abstraction: Microservices deployed in containers do not have a direct relationship with their host or the underlying operating system. This abstraction is what helps seamless migration between hosts but comes at the expense of complicating monitoring.

Communication over the network: The many moving parts of distributed applications rely completely on network communication. Consequently, the increase in network traffic puts a heavy strain on network resources necessitating intensive network monitoring and a focused effort to maintain network health.

What needs to be measured

This is a high-level laundry list of what needs to be done/measured while monitoring microservices and their containers.

Auto-discovery of containers and microservices:

As we’ve seen, monitoring microservices in a containerized world is a whole new ball game. In the highly distributed, dynamic infra environment where ephemeral containers scale, shrink and move between nodes on demand, traditional monitoring methods using agents to get information will not work. The monitoring system needs to automatically discover and track the creation/destruction of containers and explore services running in them.

Microservices:

  • Availability and performance of individual services
  • Host and infrastructure metrics
  • Microservice metrics
  • APIs and API transactions
    • Ensure API transactions are available and stable
    • Isolate problematic transactions and endpoints
  • Dependency mapping and correlation
  • Features relating to traditional APM

Containers:

  • Detailed information relating to each container
    • Health of clusters, master and slave nodes
  • Number of clusters
  • Nodes per cluster
  • Containers per cluster
    • Performance of core Docker engine
    • Performance of container instances

Things to consider while adapting to the new IT landscape

Granularity and Aggregation: With the increase in the number of objects in the system, it is important to first understand the performance target of what’s being measured – for instance, if a service targets 99% uptime(yearly), polling it every minute would be an overkill. Based on this, data granularity needs to be set prudently for each aspect measured, and can be aggregated where appropriate. This is to prevent data inundation that could overwhelm the monitoring module and drive up costs associated with data collection, storage, and management.    

Monitor Containers: The USP of containers is the abstraction they provide to microservices, encapsulating and shielding them from the details of the host or operating system. While this makes microservices portable, it makes them hard to reach for monitoring. Two recommended solutions for this are to instrument the microservice code to generate stats and/or traces for all actions (can be used for distributed tracing) and secondly to get all container activity information through host operating system instrumentation.    

Track Services through the Container Orchestration Platform: While we could obtain container-level data from the host kernel, it wouldn’t give us holistic information about the service since there could be several containers that constitute a service. Container-native monitoring solutions could use metadata from the container orchestration platform by drilling into appropriate layers of the platform to obtain service-level metrics. 

Adapt to dynamic IT landscapes: As mentioned earlier, today’s IT landscape is dynamically provisioned, elastic and characterized by mobile and transient objects. Monitoring systems themselves need to be elastic and deployable across multiple locations to cater to distributed systems and leverage native monitoring solutions for private clouds.

API Monitoring: Monitoring APIs can provide a wealth of information in the black box world of containers. Tracking API calls from the different entities – microservices, container solution, container orchestration platform, provisioning system, host kernel can help extract meaningful information and make sense of the fickle environment.

Watch this space for more on Monitoring and other IT Ops topics. You can find our blog on Monitoring for Success here, which gives an overview of the Monitorcomponent of GAVS’ AIOps Platform, Zero Incident FrameworkTM (ZIF). You can Request a Demo or Watch how ZIF works here.

About the Author:

Sivaprakash Krishnan


Bio – Siva is a long timer at Gavs and has been with the company for close to 15 years. He started his career as a developer and is now an architect with a strong technology background in Java, Big Data, DevOps, Cloud Computing, Containers and Micro Services. He has successfully designed & created a stable Monitoring Platform for ZIF, and designed & driven cloud assessment and migration, enterprise BRMS and IoT based solutions for many of our customers. He is currently focused on building ZIF 4.0, a new gen business-oriented TechOps platform.

Padmapriya Sridhar


Bio – Priya is part of the Marketing team at GAVS. She is passionate about Technology, Indian Classical Arts, Travel and Yoga. She aspires to become a Yoga Instructor some day!

Can automation manage system alerts?

System alerts and critical alerts

One of the most important and critical roles of an IT professional is to handle incoming alerts efficiently and effectively. This will ensure a threat-free environment and reduce the chances of system outages. Now, not all incoming alerts are critical; an alert can pop up on a window screen for a user to act on, blocking the underlying webpage. One can configure the setting to automatic alert resolution where an alert will be closed automatically after a number of days.

Can automation manage system alerts?

Gradually, many companies are incorporating automation in the field of managing system alerts. The age-old technology of monitoring system for both, internal and external alerts is not effective in streamlining the actual process of managing these incoming alerts. Here, IT process automation (ITPA) can take incident management to a whole new level. Automation in collaboration with monitoring tools can identify, analyze and finally prioritize incoming alerts while sending notification to fix the issue. Such notifications can be customized depending on the selected mode of preference. Also, it is worth mentioning here that automated workflows can be created to open, update and close tickets in the service desk, minimizing human intervention while electronically resolving issues.

Integration of a monitoring system with automation

Automation of system alerts happen with the following workflow. It highly improved the incident management system, reducing human intervention and refining the quality of monitoring.

  1. The monitoring system detects an incident within the IT infrastructure and triggers an alert.
  2. The alert is addressed by automation software and a trouble ticket is generated thereafter in service desk.
  3. Then the affected lot is notified via preferred method of communication.
  4. Network admin is then notified by ITPA to address the issue and recover.
  5. The service ticket is accordingly updated through implementation of automation.

Benefits of automation to manage system alerts

Relying on a process that is manually performed especially, while dealing with critical information in a workflow can be difficult. In such a scenario, automation of monitoring critical data in business systems like accounting, CRM, ERP or warehousing can improve on consistency. It can also recognize significant or critical data changes immediately triggering notification for the same. With this 360-degree visibility of critical information, decision making can happen a lot faster which in the long run can forestall serious crisis. It also improves the overall performance of the company and customer service and reduces financial risk due to anomalies and security threats. Hence, it can be aptly mentioned that automation of system alerts can effectively reduce response and resolution time. It can also lessen system downtime and improve MTTR.

BPA platform’s role to manage system alerts

The business process automation (BPA) platform enables multi-recipient capabilities so that notification can be sent to employees across different verticals. This will increase their visibility on real-time information that is relevant to their organizational role. This platform also provides escalation capabilities where notification will be sent to higher management if an alert is not addressed on time.

Conclusion

For large-scale organizations, the number of alerts spotted by detection tools are growing in number with time. This inspired IT enterprises to automate security control configurations and implement responsive security analysis tasks. Through automation of security control and processes, a new firewall rule can be automatically created or deleted based on alerts. Once a threat is detected, automated response is created. We can conclude that automation can manage system alerts efficiently and effectively. And a pre-built workflow often helps to jump-start an automation process of addressing a system alert.

READ ALSO OUR NEW UPDATES

AIOps Trends in 2019

Adoption of AIOps by organizations

Artificial Intelligence in IT operations (AIOps) is rapidly pacing up with digital transformation. Over the years, there has been a paradigm shift of enterprise application and IT infrastructure. With a mindset to enhance flexibility and agility of business processes, organizations are readily adopting cloud platforms to provision their on-premise software. Implementation of technologies like AIOps and hybrid environment has facilitated organizations to gauge the operational challenges and reduced their operational costs considerably. It helps enterprises in:

  • Resource utilization
  • Capacity planning
  • Anomaly detection
  • Threat detection
  • Storage management
  • Cognitive analysis

Infact, if we look at Gartner’s prediction, by 2022, 40% of medium and large-scale enterprises will adopt artificial intelligence (AI) to increase IT productivity.

AIOps Market forecast

According to Infoholic Research, the AIOps market is expected to reach approximately $14 billion by 2024, growing at a CAGR of 33.08% between 2018–2024. The companies that will provide AIOps solutions to enhance IT operations management in 2019 include BMC Software, IBM, GAVS Technologies, Splunk, Fix Stream, Loom System and Micro Focus. By end of 2019, US alone is expected to contribute over 30% of growth in AIOps and it will also help the global IT industry reach over $5,000 billion by the end of this year. Research conducted by Infoholic also confirmed that AIOps has been implemented by 60% of the organizations to reduce noise alerts and identify real-time root cause analysis.

Changes initiated by enterprises to adopt AIOps

2019 will be the year to reveal the true value of AIOps through its applications. By now, organizations have realized that context and efficient integrations with existing systems are essential to successfully implement AIOps.

1. Data storage

Since AIOps need to operate on a large amount of data, it is essential that enterprises absorb data from reliable and disparate sources which, then, can be contextualized for use in AI and ML applications. For this process to work seamlessly, data must be stored in modern data lakes so that it can be free from traditional silos.

2. Technology partnership

Maintaining data accuracy is a constant struggle and in order to overcome such complexity, in 2019, there will be technology partnership between companies to deal with customer demands for better application program interface (APIs).

3. Automation of menial tasks

Organizations are trying to automate menial tasks to increase agility by freeing up resources. Through automation, organizations can explore a wide range of opportunities in AIOps that will increase their efficiency.

4. Streamling of people, process and tools

Although multi-cloud solutions provide flexibility and cost-efficiency, however, without proper tools to monitor, it can be challenging to manage them. Hence, enterprises are trying to streamline their people, process and tools to create a single, siloed-free overview to benefit from AIOps.

5. Use of real-time data

Enterprises are trying to ingest and use real-time data for event correlation and immediate anomaly detection since, with the current industrial pace, old data is useless to the market.

6. Usage of self-discovery tools

Organizations are trying to induce self-discovery tools in order to overcome the challenge of lack of data scientists in the market or IT personnel with coding skills to monitor the process. The self-discovery tools can operate without human intervention.

Conclusion

Between 2018 to 2024, the global AIOps market value of real time analytics and application performance management is expected to grow at a rapid pace. Also, it is observed that currently only 5% of large IT firms have adopted AIOps platforms due to lack of knowledge and assumption about the cost-effectiveness. However, this percentage is expected to reach 40% by 2022. Companies like CA Technologies, GAVS Technologies, Loom Systems and ScienceLogic has designed tools to simplify AIOps deployment and it is anticipated that over the next three years, there will be sizable progress in the AIOps market.

READ ALSO OUR NEW UPDATES

Pivotal Role of AI and Machine Learning in Industry 4.0 and Manufacturing

Industry 4.0 is a name given to the current trend of automation and data exchange in manufacturing technologies. It includes cyber-physical systems, the Internet of things, cloud computing and cognitive computing.Industry 4.0 is commonly referred to as the fourthindustrial revolution.

Industry 4.0 is the paving the path for digitization of the manufacturing sector, where artificial intelligence (AI) and machine-learning based systems are not only changing the ways we interact with information and computers but also revolutionizing it.

Compelling reasons for most companies to shift towards Industry 4.0 and automate manufacturing include;

  • Increase productivity
  • Minimize human / manual errors
  • Optimize production costs
  • Focus human efforts on non-repetitive tasks to improve efficiency

Manufacturing is now being driven by effective data management and AI that will decide its future. The more data sets computers are fed, the more they can observe trends, learn and make decisions that benefit the manufacturing organization. This automation will help to predict failures more accurately, predict workloads, detect and anticipate problems to achieve Zero Incidence.

GAVS’ proprietary AIOps based TechOps platform – Zero Incident Framework TM (ZIF) can successfully integrate AI and machine learning into the workflow allowing manufacturers to build robust technology foundations.

To maximize the many opportunities presented by Industry 4.0, manufacturers need to build a system with the entire production process in mind as it requires collaboration across the entire supply chain cycle.

Top ways in which ZIF’s expertise in AI and ML are revolutionizing manufacturing sector:

  • Asset management, supply chain management and inventory management are the dominant areas of artificial intelligence, machine learning and IoT adoption in manufacturing today. Combining these emerging technologies, they can improve asset tracking accuracy, supply chain visibility, and inventory optimization.
  • Improve predictive maintenance through better adoption of ML techniques like analytics, Machine Intelligence driven processes and quality optimization.
  • Reduce supply chain forecasting errors and reduce lost sales to increase better product availability.
  • Real time monitoring of the operational loads on the production floor helps in providing insights into the production schedule performances.
  • Achieve significant reduction in test and calibration time via accurate prediction of calibration and test results using machine learning.
  • Combining ML and Overall Equipment Effectiveness (OEE), manufacturers can improve yield rates, preventative maintenance accuracy and workloads by the assets. OEE is a universally used metric in manufacturing as it combines availability, performance, and quality, defining production effectiveness.
  • Improving the accuracy of detecting costs of performance degradation across multiple manufacturing scenarios that reduces costs by 50% or more.

Direct benefits of Machine Learning and AI for Manufacturing

The introduction of AI and Machine Learning to industry 4.0 represents a big change for manufacturing companies that can open new business opportunities and result in advantages like efficiency improvements among others.

  • Cost reduction through Predictive Maintenance that leads to less maintenance activity, which means lower labor costs, reduced inventory and materials wastage.
  • Predicting Remaining Useful Life (RUL): Keeping tabs on the behavior of machines and equipment leads to creating conditions that improve performance while maintaining machine health. By predicting RUL, it reduces the scenarios which causes unplanned downtime.
  • Improved supply chain management through efficient inventory management and a well monitored and synchronized production flow.
  • Autonomous equipment and vehicles: Use of autonomous cranes and trucks to streamline operations as they accept containers from transport vehicles, ships, trucks etc.
  • Better Quality Control with actionable insights to constantly raise product quality.
  • Improved human-machine collaboration while improving employee safety conditions and boosting overall efficiency.
  • Consumer-focused manufacturing: Being able to respond quickly to changes in the market demand.

Touch base with GAVS AI experts here: https://www.gavstech.com/reaching-us/ and see how we can help you drive your manufacturing operation towards Industry 4.0.