Algorithmic Alert Correlation

Today’s always-on businesses and 24×7 uptime demands have necessitated IT monitoring to go into overdrive. While constant monitoring is a good thing, the downside is that the flood of alerts generated can quickly get overwhelming. Constantly having to deal with thousands of alerts each day causes alert fatigue, and impacts the overall efficiency of the monitoring process.

Hence, chalking out an optimal strategy for alert generation & management becomes critical. Pattern-based thresholding is an important first step, since it tunes thresholds continuously, to adapt to what ‘normal’ is, for the real-time environment. Threshold accuracy eliminates false positives and prevents alerts from getting fired incorrectly. Selective alert suppression during routine IT Ops maintenance activities like backups, patches, or upgrades, is another. While there are many other strategies to keep alert numbers under control, a key process in alert management is the grouping of alerts, known as alert correlation. It groups similar alerts under one actionable incident, thereby reducing the number of alerts to be handled individually.

But, how is alert ‘similarity’ determined? One way to do this is through similarity definitions, in the context of that IT landscape. A definition, for instance, would group together alerts generated from applications on the same host, or connectivity issues from the same data center. This implies that similarity definitions depend on the physical and logical relationships in the environment – in other words – the topology map. Topology mappers detect dependencies between applications, processes, networks, infrastructure, etc., and construct an enterprise blueprint that is used for alert correlation.

But what about related alerts generated by entities that are neither physically nor logically linked? To give a hypothetical example, let’s say application A accesses a server S which is responding slowly, and so A triggers alert A1. This slow communication of A with S eats up host bandwidth, and hence affects another application B in the same host. Due to this, if a third application C from another host calls B, alert A2 is fired by C due to the delayed response from B.  Now, although we see the link between alerts A1 & A2, they are neither physically nor logically related, so how can they be correlated? In reality, such situations could imply thousands of individual alerts that cannot be combined.

Algorithmic Alert Correlation

This is one of the many challenges in IT operations that we have been trying to solve at GAVS. The correlation engine of our AIOps Platform ZIF uses algorithmic alert correlation to find a solution for this problem. We are working on two unsupervised machine learning algorithms that are fundamentally different in their approach – one based on pattern recognition and the other based on spatial clustering. Both algorithms can function with or without a topology map, and work around what is supplied and available. The pattern learning algorithm derives associations based on learnings from historic patterns of alert relationships. The spatial clustering algorithm works on the principle of similarity based on multiple features of alerts, including problem similarity derived by applying Natural Language Processing (NLP), and relationships, among several others. Tuning parameters enable customization of algorithmic behavior to meet specific demands, without requiring modifications to the core algorithms. Time is also another important dimension factored into these algorithms, since the clustering of alerts generated over an extended period of time will not give meaningful results.

Traditional alert correlation has not been able to scale up to handle the volume and complexity of alerts generated by the modern-day hybrid and dynamic IT infrastructure. We have reached a point where our ITOps needs have surpassed the limits of human capabilities, and so, supplementing our intelligence with Artificial Intelligence and Machine Learning has now become indispensable.

About the Authors –

Padmapriya Sridhar

Priya is part of the Marketing team at GAVS. She is passionate about Technology, Indian Classical Arts, Travel, and Yoga. She aspires to become a Yoga Instructor someday!

Gireesh Sreedhar KP

Gireesh is a part of the projects run in collaboration with IIT Madras for developing AI solutions and algorithms. His interest includes Data Science, Machine Learning, Financial markets, and Geo-politics. He believes that he is competing against himself to become better than who he was yesterday. He aspires to become a well-recognized subject matter expert in the field of Artificial Intelligence.

Generative Adversarial Networks (GAN)

In my previous article (zif.ai/inverse-reinforcement-learning/), I had introduced Inverse Reinforcement Learning and explained how it differs from Reinforcement Learning. In this article, let’s explore Generative Adversarial Networks or GAN; both GAN and reinforcement learning help us understand how deep learning is trying to imitate human thinking.

With access to greater hardware power, Neural Networks have made great progress. We use them to recognize images and voice at levels comparable to humans sometimes with even better accuracy. Even with all of that we are very far from automating human tasks with machines because a tremendous amount of information is out there and to a large extent easily accessible in the digital world of bits. The tricky part is to develop models and algorithms that can analyze and understand this humongous amount of data.

GAN in a way comes close to achieving the above goal with what we call automation, we will see the use cases of GAN later in this article.

This technique is very new to the Machine Learning (ML) world. GAN is a deep learning, unsupervised machine learning technique proposed by Ian Goodfellow and few other researchers including Yoshua Bengio in 2014. One of the most prominent researcher in the deep learning area, Yann LeCun described it as “the most interesting idea in the last 10 years in Machine Learning”.

What is Generative Adversarial Network (GAN)?

A GAN is a machine learning model in which two neural networks compete to become more accurate in their predictions. GANs typically run unsupervised and use a cooperative zero-sum game framework to learn.

The logic of GANs lie in the rivalry between the two Neural Nets. It mimics the idea of rivalry between a picture forger and an art detective who repeatedly try to outwit one another. Both networks are trained on the same data set.

A generative adversarial network (GAN) has two parts:

  • The generator (the artist) learns to generate plausible data. The generated instances become negative training examples for the discriminator.
  • The discriminator (the critic) learns to distinguish the generator’s fake data from real data. The discriminator penalizes the generator for producing implausible results.

GAN can be compared with Reinforcement Learning, where the generator is receiving a reward signal from the discriminator letting it know whether the generated data is accurate or not.

Generative Adversarial Networks

During training, the generator tries to become better at generating real looking images, while the discriminator trains to be better classify those images as fake. The process reaches equilibrium at a point when the discriminator can no longer distinguish real images from fakes.

Generative Adversarial Networks

Here are the steps a GAN takes:

  • The input to the generator is random numbers which returns an image.
  • The output image of the generator is fed as input to the discriminator along with a stream of images taken from the actual dataset.
  • Both real and fake images are given to the discriminator which returns probabilities, a number between 0 and 1, 1 meaning a prediction of authenticity and 0 meaning fake.

So, you have a double feedback loop in the architecture of GAN:

  • We have a feedback loop with the discriminator having ground truth of the images from actual training dataset
  • The generator is, in turn, in a feedback loop along with the discriminator.

Most GANs today are at least loosely based on the DCGAN architecture (Radford et al., 2015). DCGAN stands for “deep, convolution GAN.” Though GANs were both deep and convolutional prior to DCGANs, the name DCGAN is useful to refer to this specific style of architecture.

Applications of GAN

Now that we know what GAN is and how it works, it is time to dive into the interesting applications of GANs that are commonly used in the industry right now.

Generative Adversarial Networks

Can you guess what’s common among all the faces in this image?

None of these people are real! These faces were generated by GANs, exciting and at the same time scary, right? We will focus about the ethical application of the GAN in the article.

GANs for Image Editing

Using GANs, appearances can be drastically changed by reconstructing the images.

GANs for Security

GANs has been able to address the concern of ‘adversarial attacks’.

These adversarial attacks use a variety of techniques to fool deep learning architectures. Existing deep learning models are made more robust to these techniques by GANs by creating more such fake examples and training the model to identify them.

Generating Data with GANs

The availability of data in certain domains is a necessity, especially in domains where training data is needed to model learning algorithms. The healthcare industry comes to mind here. GANs shine again as they can be used to generate synthetic data for supervision.

GANs for 3D Object Generation

GANs are quite popular in the gaming industry. Game designers work countless hours recreating 3D avatars and backgrounds to give them a realistic feel. And, it certainly takes a lot of effort to create 3D models by imagination. With the incredible power of GANs, wherein they can be used to automate the entire process!

GANs are one of the few successful techniques in unsupervised machine learning and it is evolving quickly and improving our ability to perform generative tasks. Since most of the successful applications of GANs have been in the domain of computer vision, generative model sure has a lot of potential, but is not without some drawbacks.

About the Author –

Naresh B

Naresh is a part of Location Zero at GAVS as an AI/ML solutions developer. His focus is on solving problems leveraging AI/ML.
He strongly believes in making success as a habit rather than considering it as a destination.
In his free time, he likes to spend time with his pet dogs and likes sketching and gardening.

Assess Your Organization’s Maturity in Adopting AIOps

Artificial Intelligence for IT operations (AIOps) is adopted by organizations to deliver tangible Business Outcomes. These business outcomes have a direct impact on companies’ revenue and customer satisfaction.

A survey from AIOps Exchange 2019, reports that 84% of Business Owners who attended the survey, confirmed that they are actively evaluating AIOps to be adopted in their organizations.

So, is AIOps just automation? Absolutely NOT!!

Artificial Intelligence for IT operations implies the implementation of true Autonomous Artificial Intelligence in ITOps, which needs to be adopted as an organization-wide strategy. Organizations will have to assess their existing landscape, processes, and decide where to start. That is the only way to achieve the true implementation of AIOps.

Every organization trying to evaluate AIOps as a strategy should read through this article to understand their current maturity, and then move forward to reach the pinnacle of Artificial Intelligence in IT Operations.

The primary Success Factor in adopting AIOps is derived from the Business Outcomes the organization is trying to achieve by implementing AIOps –that is the only way to calculate ROI.

There are 4 levels of Maturity in AIOps adoption. Based on our experience in developing an AIOps platform and implementing the platform across multiple industries, we have arrived at these 4 levels. Assessing an organization against each of these levels helps in achieving the goal of TRUE Artificial Intelligence in IT Operations.

Level 1: Knee-jerk

Events, logs are generated in silos and collected from various applications and devices in the infrastructure. These are used to generate alerts that are commissioned to command centres to escalate as per the SOPs (standard operating procedures) defined. The engineering teams work in silos, not aware of the business impact that these alerts could potentially create. Here, operations are very reactive which could cost the organization millions of dollars.

Level 2: Unified

Have integrated all events, logs, and alerts into one central locale. ITSM process has been unified. This helps in breaking silos and engineering teams are better prepared to tackle business impacts. SOPs have been adjusted since the process is unified, but this is still reactive incident management.

Level 3: Intelligent

Machine Learning algorithms (either supervised or unsupervised) have been implemented on the unified data to derive insights. There are baseline metrics that are calibrated and will be used as a reference for future events. With more data, the metrics get richer. IT operations team can correlate incidents/events with business impacts by leveraging AI & ML. If Mean Time To Resolve (MTTR) an incident has been reduced by automated identification of the root cause, then the organization has attained level 3 maturity in AIOps.

Level 4: Predictive & Autonomous

The pinnacle of AIOps is level 4. If incidents and performance degradation of applications can be predicted by leveraging Artificial Intelligence, it implies improved application availability. Autonomousremediation bots can be triggered spontaneously based on the predictive insights, to fix incidents that are prone to happen in the enterprise. Level 4 is a paradigm shift in IT operations – moving operations entirely from being reactive, to becoming proactive.

Conclusion:

As IT operations teams move up each level, the essential goal to keep in mind is the long-term strategy that needs to be attained by adopting AIOps. Artificial Intelligence has matured over the past few decades, and it is up to AIOps platforms to embrace it effectively. While choosing an AIOps platform, measure the maturity of the platform’s artificial intelligent coefficient.

About the Author:

Anoop Aravindakshan (Principal Consultant Manager) at GAVS Technologies.


An evangelist of Zero Incident FrameworkTM, Anoop has been a part of the product engineering team for long and has recently forayed into product marketing. He has over 14 years of experience in Information Technology across various verticals, which include Banking, Healthcare, Aerospace, Manufacturing, CRM, Gaming, and Mobile.

Prediction for Business Service Assurance

Artificial Intelligence for IT operations or AIOps has exploded over the past few years. As more and more enterprises set about their digital transformation journeys, AIOps becomes imperative to keep their businesses running smoothly. 

AIOps uses several technologies like Machine Learning and Big Data to automate the identification and resolution of common Information Technology (IT) problems. The systems, services, and applications in a large enterprise produce volumes of log and performance data. AIOps uses this data to monitor the assets and gain visibility into the behaviour and dependencies among these assets.

According to a Gartner publication, the adoption of AIOps by large enterprises would rise to 30% by 2023.

ZIF – The ideal AIOps platform of choice

Zero Incident FrameworkTM (ZIF) is an AIOps based TechOps platform that enables proactive detection and remediation of incidents helping organizations drive towards a Zero Incident Enterprise™.

ZIF comprises of 5 modules, as outlined below.

At the heart of ZIF, lies its Analyze and Predict (A&P) modules which are powered by Artificial Intelligence and Machine Learning techniques. From the business perspective, the primary goal of A&P would be 100% availability of applications and business processes.

Let us understand more about thePredict module of ZIF.

Predictive Analytics is one of the main USP of the ZIF platform. ZIF encompassesSupervised, Unsupervised and Reinforcement Learning algorithms for realization of various business use cases (as shown below).

How does the Predict Module of ZIF work?

Through its data ingestion capabilities, the ZIF platform can receive and process all types of data (both structured and unstructured) from various tools in the enterprise. The types of data can be related to alerts, events, logs, performance of devices, relations of devices, workload topologies, network topologies etc. By analyzing all these data, the platform predicts the anomalies that can occur in the environment. These anomalies get presented as ‘Opportunity Cards’ so that suitable action can be taken ahead of time to eliminate any undesired incidents from occurring. Since this is ‘Proactive’ and not ‘Reactive’, it brings about a paradigm shift to any organization’s endeavour to achieve 100% availability of their enterprise systems and platforms. Predictions are done at multiple levels – application level, business process level, device level etc.

Sub-functions of Prediction Module

How does the Predict module manifest to enterprise users of the platform?

Predict module categorizes the opportunity cards into three swim lanes.

  1. Warning swim lane – Opportunity Cards that have an “Expected Time of Impact” (ETI) beyond 60 minutes.
  2. Critical swim lane – Opportunity Cards that have an ETI within 60 minutes.
  3. Processed / Lost– Opportunity Cards that have been processed or lost without taking any action.

Few of the enterprises that realized the power of ZIF’s Prediction Module

  • A manufacturing giant in the US
  • A large non-profit mental health and social service provider in New York
  • A large mortgage loan service provider in the US
  • Two of the largest private sector banks in India

For more detailed information on GAVS’ Analyze, or to request a demo please visithttps://zif.ai/products/predict/

References:https://www.gartner.com/smarterwithgartner/how-to-get-started-with-aiops/

About the Author:

Vasudevan Gopalan

Vasu heads Engineering function for A&P. He is a Digital Transformation leader with ~20 years of IT industry experience spanning across Product Engineering, Portfolio Delivery, Large Program Management etc. Vasu has designed and delivered Open Systems, Core Banking, Web / Mobile Applications etc.

Outside of his professional role, Vasu enjoys playing badminton and focusses on fitness routines.

Discover, Monitor, Analyze & Predict COVID-19

Uber, the world’s largest taxi company, owns no vehicles. Facebook, the world’s most popular media owner, creates no content. Alibaba, the most valuable retailer, has no inventory. Netflix, the world’s largest movie house, own no cinemas. And Airbnb, the world’s largest accommodation provider, owns no real estate. Something interesting is happening.”

– Tom Goodwin, an executive at the French media group Havas.

This new breed of companies is the fastest growing in history because they own the customer interface layer. It is the platform where all the value and profit is. “Platform business” is a more wholesome termfor this model for which data is the fuel; Big Data & AI/ML technologies are the harbinger of new waves of productivity growth and innovation.

With Big data and AI/ML is making a big difference in the area of public health, let’s see how it is helping us tackle the global emergency of coronavirus formally known as COVID-19.

“With rapidly spreading disease, a two-week lag is an eternity.”

DISCOVERING/ DETECTING

Chinese technology giant Alibaba has developed an AI system for detecting the COVID-19 in CT scans of patients’ chests with 96% accuracy against viral pneumonia cases. It only takes 20 seconds for the AI to decide, whereas humans generally take about 15 minutes to diagnose the illness as there can be upwards of 300 images to evaluate.The system was trained on images and data from 5,000 confirmed coronavirus cases and has been tested in hospitals throughout China. Per a report, at least 100 healthcare facilities are currently employing Alibaba’s AI to detect COVID-19.

Ping An Insurance (Group) Company of China, Ltd (Ping An) aims to address the issue of lack of radiologists by introducing the COVID-19 smart image-reading system. This image-reading system can read the huge volumes of CT scans in epidemic areas.

Ping An Smart Healthcare uses clinical data to train the AI model of the COVID-19 smart image-reading system. The AI analysis engine conducts a comparative analysis of multiple CT scan images of the same patient and measures the changes in lesions. It helps in tracking the development of the disease, evaluation of the treatment and in prognosis of patients.Ultimately it assists doctors to diagnose, triage and evaluate COVID-19 patients swiftly and effectively.

Ping An Smart Healthcare’s COVID-19 smart image-reading system also supports AI image-reading remotely by medical professionals outside the epidemic areas.Since its launch, the smart image-reading system has provided services to more than 1,500 medical institutions. More than 5,000 patients have received smart image-reading services for free.

The more solutions the better. At least when it comes to helping overwhelmed doctors provide better diagnoses and, thus, better outcomes.

MONITORING

  • AI based Temperature monitoring & scanning

In Beijing, China, subway passengers are being screened for symptoms of coronavirus, but not by health authorities. Instead, artificial intelligence is in-charge.

Two Chinese AI giants, Megvii and Baidu, have introduced temperature-scanning. They have implemented scanners to detect body temperature and send alerts to company workers if a person’s body temperature is high enough to constitute a fever.

Megvii’s AI system detects body temperatures for up to 15 people per second andup to 16 feet. It monitors as many as 16 checkpoints in a single station. The system integrates body detection, face detection, and dual sensing via infrared cameras and visible light. The system can accurately detect and flag high body temperature even when people are wearing masks, hats, or covering their faces with other items. Megvii’s system also sends alerts to an on-site staff member.

Baidu, one of the largest search-engine companies in China, screens subway passengers at the Qinghe station with infrared scanners. It also uses a facial-recognition system, taking photographs of passengers’ faces. If the Baidu system detects a body temperature of at least 99-degrees Fahrenheit, it sends an alert to the staff member for another screening. The technology can scan the temperatures of more than 200 people per minute.

  • AI based Social Media Monitoring

An international team is using machine learning to scour through social media posts, news reports, data from official public health channels, and information supplied by doctors for warning signs of the virus across geographies.The program is looking for social media posts that mention specific symptoms, like respiratory problems and fever, from a geographic area where doctors have reported potential cases. Natural language processing is used to parse the text posted on social media, for example, to distinguish between someone discussing the news and someone complaining about how they feel.

The approach has proven capable of spotting a coronavirus needle in a haystack of big data. This technique could help experts learn how the virus behaves. It may be possible to determine the age, gender, and location of those most at risk quicker than using official medical sources.

PREDICTING

Data from hospitals, airports, and other public locations are being used to predict disease spread and risk. Hospitals can also use the data to plan for the impact of an outbreak on their operations.

Kalman Filter

Kalman filter was pioneered by Rudolf Emil Kalman in 1960, originally designed and developed to solve the navigation problem in the Apollo Project. Since then, it has been applied to numerous cases such as guidance, navigation, and control of vehicles, computer vision’s object tracking, trajectory optimization, time series analysis in signal processing, econometrics and more.

Kalman filter is a recursive algorithm which uses time-series measurement over time, containing statistical noise and produce estimations of unknown variables.

For the one-day prediction Kalman filter can be used, while for the long-term forecast a linear model is used where its main features are Kalman predictors, infected rate relative to population, time-depended features, and weather history and forecasting.

The one-day Kalman prediction is very accurate and powerful while a longer period prediction is more challenging but provides a future trend.Long term prediction does not guarantee full accuracy but provides a fair estimation following the recent trend. The model should re-run daily to gain better results.

GitHub Link: https://github.com/Rank23/COVID19

ANALYZING

The Center for Systems Science and Engineering at Johns Hopkins University has developed an interactive, web-based dashboard that tracks the status of COVID-19 around the world. The resource provides a visualization of the location and number of confirmed COVID-19 cases, deaths and recoveries for all affected countries.

The primary data source for the tool is DXY, a Chinese platform that aggregates local media and government reports to provide COVID-19 cumulative case totals in near real-time at the province level in China and country level otherwise. Additional data comes from Twitter feeds, online news services and direct communication sent through the dashboard. Johns Hopkins then confirms the case numbers with regional and local health departments. This kind of Data analytics platform plays a pivotal role in addressing the coronavirus outbreak.

All data from the dashboard is also freely available in the following GitHub repository.

GitHub Link:https://bit.ly/2Wmmbp8

Mobile version: https://bit.ly/2WjyK4d

Web version: https://bit.ly/2xLyT6v

Conclusion

One of AI’s core strengths when working on identifying and limiting the effects of virus outbreaks is its incredibly insistent nature. AIsystems never tire, can sift through enormous amounts of data, and identify possible correlations and causations that humans can’t.

However, there are limits to AI’s ability to both identify virus outbreaks and predict how they will spread. Perhaps the best-known example comes from the neighboring field of big data analytics. At its launch, Google Flu Trends was heralded as a great leap forward in relation to identifying and estimating the spread of the flu—until it underestimated the 2013 flu season by a whopping 140 percent and was quietly put to rest.Poor data quality was identified as one of the main reasons Google Flu Trends failed. Unreliable or faulty data can wreak havoc on the prediction power of AI.

References:

About the Author:

Bargunan Somasundaram

Bargunan Somasundaram

Bargunan is a Big Data Engineer and a programming enthusiast. His passion is to share his knowledge by writing his experiences about them. He believes “Gaining knowledge is the first step to wisdom and sharing it is the first step to humanity.”

AI in Healthcare

The Healthcare Industry is going through a quiet revolution. Factors like disease trends, doctor demographics, regulatory policies, environment, technology etc. are forcing the industry to turn to emerging technologies like AI, to help adapt to the pace of change. Here, we take a look at some key use cases of AI in Healthcare.

Medical Imaging

The application of Machine Learning (ML) in Medical Imaging is showing highly encouraging results. ML is a subset of AI, where algorithms and models are used to help machines imitate the cognitive functions of the human brain and to also self-learn from their experiences.

AI can be gainfully used in the different stages of medical imaging- in acquisition, image reconstruction, processing, interpretation, storage, data mining & beyond. The performance of ML computational models improves tremendously as they get exposed to more & more data and this foundation on colossal amounts of data enables them to gradually better humans at interpretation. They begin to detect anomalies not perceptible to the human eye & not discernible to the human brain!

What goes hand-in-hand with data, is noise. Noise creates artifacts in images and reduces its quality, leading to inaccurate diagnosis. AI systems work through the clutter and aid noise- reduction leading to better precision in diagnosis, prognosis, staging, segmentation and treatment.

At the forefront of this use case is Radio genomics- correlating cancer imaging features and gene expression. Needless to say, this will play a pivotal role in cancer research.

Drug Discovery

Drug Discovery is an arduous process that takes several years from the start of research to obtaining approval to market. Research involves laboring through copious amounts of medical literature to identify the dynamics between genes, molecular targets, pathways, candidate compounds. Sifting through all of this complex data to arrive at conclusions is an enormous challenge. When this voluminous data is fed to the ML computational models, relationships are reliably established. AI powered by domain knowledge is slashing down time & cost involved in new drug development.

Cybersecurity in Healthcare

Data security is of paramount importance to Healthcare providers who need to ensure confidentiality, integrity, and availability of patient data. With cyberattacks increasing in number and complexity, these formidable threats are giving security teams sleepless nights! The main strength of AI is its ability to curate massive quantities of data- here threat intelligence, nullify the noise, provide instant insights & self-learn in the process. Predictive & Prescriptive capabilities of these computational models drastically reduces response time.

Virtual Health assistants

Virtual Health assistants like Chatbots, give patients 24/7 access to critical information, in addition to offering services like scheduling health check-ups or setting up appointments. AI- based platforms for wearable health devices and health apps come armed with loads of features to monitor health signs, daily activities, diet, sleep patterns etc. and provide alerts for immediate action or suggest personalized plans to enable healthy lifestyles.

AI for Healthcare IT Infrastructure

Healthcare IT Infrastructure running critical applications that enable patient care, is the heart of a Healthcare provider. With dynamically changing IT landscapes that are distributed, hybrid & on-demand, IT Operations teams are finding it hard to keep up. Artificial Intelligence for IT Ops (AIOps) is poised to fundamentally transform the Healthcare Industry. It is powering Healthcare Providers across the globe, who are adopting it to Automate, Predict, Remediate & Prevent Incidents in their IT Infrastructure. GAVS’ Zero Incident FrameworkTM (ZIF) – an AIOps Platform, is a pure-play AI platform based on unsupervised Machine Learning and comes with the full suite of tools an IT Infrastructure team would need. Please watch this video to learn more.

READ ALSO OUR NEW UPDATES

Analyze

Have you heard of AIOps?

Artificial intelligence for IT operations (AIOps) is an umbrella term for the application of Big Data Analytics, Machine Learning (ML) and other Artificial Intelligence (AI) technologies to automate the identification and resolution of common Information Technology (IT) problems. The systems, services and applications in a large enterprise produce immense volumes of log and performance data. AIOps uses this data to monitor the assets and gain visibility into the working behaviour and dependencies between these assets.

According to a Gartner study, the adoption of AIOps by large enterprises would rise to 30% by 2023.

ZIF – The ideal AIOps platform of choice

Zero Incident FrameworkTM (ZIF) is an AIOps based TechOps platform that enables proactive detection and remediation of incidents helping organizations drive towards a Zero Incident Enterprise™

ZIF comprises of 5 modules, as outlined below.

At the heart of ZIF, lies its Analyze and Predict (A&P) modules which are powered by Artificial Intelligence and Machine Learning techniques. From the business perspective, the primary goal of A&P would be 100% availability of applications and business processes.

Come, let us understand more about the Analyze function of ZIF.

With Analyzehaving a Big Data platform under its hood, volumes of raw monitoring data, both structured and unstructured, can be ingested and grouped to build linkages and identify failure patterns.

Data Ingestion and Correlation of Diverse Data

The module processes a wide range of data from varied data sources to break siloes while providing insights, exposing anomalies and highlighting risks across the IT landscape. It increases productivity and efficiency through actionable insights.

  • 100+ connectors for leading tools, environments and devices
  • Correlation and aggregation methods uncover patterns and relationships in the data

Noise Nullification

Eliminates duplicate incidents, false positives and any alerts that are insignificant. This also helps reduce the Mean-Time-To-Resolution and event-to-incident ratio.

  • Deep learning algorithms isolate events that have the potential to become incidents along with their potential criticality
  • Correlation and Aggregation methods group alerts and incidents that are related and needs a common remediation
  • Reinforcement learning techniques are applied to find and eliminate false positives and duplicates

Event Correlation

Data from various sources are ingested real-time into ZIF either by push or pull mechanism. As the data is ingested, labelling algorithms are run to label the data based on identifiers. The labelled data is passed through the correlation engine where unsupervised algorithms are run to mine the patterns. Sub-sequence mining algorithms help in identifying unique patterns from the data.

Unique patterns identified are clustered using clustering algorithms to form cases. Every case that is generated is marked by a unique case id. As part of the clustering process, seasonality aspects are checked from historical transactions to derive higher accuracy of correlation.

Correlation is done based on pattern recognition, helping to eliminate the need for relational CMDB from the enterprise. The accuracy of the correlation increases as patterns reoccur. Algorithms also can unlearn patterns based on the feedback that can be provided by actions taken on correlation. As these are unsupervised algorithms, the patterns are learnt with zero human intervention.

Accelerated Root Cause Analysis (RCA)

Analyze module helps in identifying the root causes of incidents even when they occur in different silos. Combination of correlation algorithms with unsupervised deep learning techniques aid in accurately nailing down the root causes of incidents/problems. Learnings from historical incidents are also applied to find root causes in real-time. The platform retraces the user journeys step-by-step to identify the exact point where an error occurs.

Customer Success Story – How ZIF’s A&P transformed IT Operations of a Manufacturing Giant

  • Seamless end-to-end monitoring – OS, DB, Applications, Networks
  • Helped achieve more than 50% noise reduction in 6 months
  • Reduced P1 incidents by ~30% through dynamic and deep monitoring
  • Achieved declining trend of MTTR and an increasing trend of Availability
  • Resulted in optimizingcommand centre/operations head count by ~50%
  • Resulted in ~80% reduction in operations TCO

For more detailed information on GAVS’ Analyze, or to request a demo please visit zif.ai/products/analyze

References: www.gartner.com/smarterwithgartner/how-to-get-started-with-aiops

ABOUT THE AUTHOR

Vasudevan Gopalan


Vasu heads Engineering function for A&P. He is a Digital Transformation leader with ~20 years of IT industry experience spanning across Product Engineering, Portfolio Delivery, Large Program Management etc. Vasu has designed and delivered Open Systems, Core Banking, Web / Mobile Applications etc.

Outside of his professional role, Vasu enjoys playing badminton and focusses on fitness routines.

READ ALSO OUR NEW UPDATES

What chatbots will do for your enterprise?

Gen X, Y or any other fancy term describing the current demographics is tuned to using voice, text and natural language to complete their work. That’s why a new generation of enterprise chatbots is needed at work.

Read over the textbook definition of a chatbot and you’ll understand it’s a computer program designed to hold conversations with humans over the internet. They can understand written and spoken text and interpret its meaning as well. The bot can then look up relevant information and deliver it to the user.

While chatbots reduces time and efforts, it’s not easy to create a chatbot that customers will trust. Businesses will have to consider the overall.

  • Security
  • Team complexity
  • Brand image
  • Scalability/availability
  • Identity and access management
  • Other parameters to fully integrate chatbots in their organizational structure

If correctly implemented enterprise chatbots can perform pre-defined roles and tasks to improve the business processes and activities.

Shortlisting the right chatbot

Automating repetitive and mundane work will increase the productivity, creativity, and efficiency of the organization. Evolution of chatbots will create more business opportunities for enterprises and new companies. Both SMBs and enterprises can improve their customer satisfaction with customized chatbots that help in offloading employee workload or support the various teams in the organization.

Enterprises first need to identify the type of chatbots needed for their organization to kick start their digital transformation. Depending on their requirements, there are two types of chatbots.

  • Standalone applications
  • Built within the messengers

Usually chatbots associated with messengers have an edge over standalone apps. They can be downloaded and used instantly. They are even easy to build and upgrade, faster compared to apps and websites and also cost effective. You also don’t have to worry about memory space.

AI based or machine learning chatbots learn over time from past questions and answers, and evolve their response accordingly.

What’s in it for enterprises?

There are some universal benefits that businesses in any industry or vertical can benefit from.

Streamlining your IT processes

A variety of business processes across your departments can be streamlined using chatbots. Your employees’ mundane, repetitive but essential tasks can be taken up by the chatbots, giving more time for revenue generating activities. For instance, they can be tasked with follow ups with clients or answering the FAQs by customers.

Act as personal assistants

Chatbots are a great help for the time constrained employees to manage, schedule, or cancel their meetings, setting alarms and other tasks. Context sensitive digital assistants help in organizing their daily routine by understanding the context, behaviors and patterns and suggesting recommendations.

24/7 customer support

Customer expectation is high with them demanding instant and quick resolution for their concerns and problems. Enterprise chatbot solutions offer a cost effective 24/7 customer services for you. Advancements in AI, machine learning and natural language processing (NLP) can allow them to understand the context, usage of slangs, and human conversation to a large extent. On a cautionary note, chatbots should easily handover the conversation to humans to avoid any unnecessary customer conflicts.

Generate business insights

The data deluge faced by the enterprises is costing them through lost insights and business opportunities. Vast data generated across the organization by employees, customers and business processes cannot be completely analyzed, and it leaves data gaps. Leveraging chatbots for processing and analyzing the stored data can result in identifying potential problem areas and take preemptive actions to mitigate the risks.

Reduce Opex & Capex costs

Enterprise chatbots are one-time investments, where you pay only for the chatbot, train it and its forever yours. No monthly payrolls, or sick leaves. You have a 24/7 virtual employee managing your routine and repetitive tasks.

Increase efficiency and productivity

The end result of all the above points is increased productivity. By training your employees about the services and products, a chatbot solution helps your employees to tackle the generic queries from customers. Thus, ending the time-consuming customer facing tasks and helping in the sales funnel.

In conclusion, chatbots are changing the working dynamics of enterprises. The best way to ensure a satisfied customer experience is to build bots that act without being supervised and offer the best solutions to their problems. With new advancements like AI, NLP and Machine Learning, it’s safe to say that chatbots are the future of enterprises.

READ ALSO OUR NEW UPDATES

8 Ways AI Will Impact Healthcare

Artificial Intelligence (AI) is still a layered subject that’s both exciting and scary to say the least. Given the new information being discovered each day, people are still nervous when it comes to letting AI handle their personal data (fears of security, privacy issues etc.). But they are comfortable with doctors and physicians using AI in healthcare for providing accurate and precise medical treatments and information.

This implies a growing acceptance of the impersonal AI in healthcare, where the physical and personal contact between the caregivers and patients is high. The myriad and increasingly mainstream applications of AI in healthcare are propelling this strong and growing acceptance.

Such openness to AI is vital for healthcare companies, as it empowers the patients and caregivers to gain valuable insights from the data collected and act on them accordingly. AI can analyze loads of medical data and identify patterns to detect any deviations in the individual patient’s behavior and suggest treatment plans / changes. It can sort through assist doctors to improve the accuracy of diagnosis and help in correct treatment.

This AI aided healthcare is not only beneficial to the patients, but also healthcare companies can save time and money performing basic, non-patient care activities (like writing chart notes and prescriptions, etc.) so that caregivers have more time to spend with people.

Research shows that amongst the largest sources of savings are robot-assisted surgery ($40 billion in savings), virtual nursing assistants ($20 billion) and administrative workflow assistance ($18 billion).

AI, Healthcare, and Interconnection.

The bridge between AI and healthcare can only function and give value if the interconnection is smooth and inter-operable. That’s because AI is highly data driven requiring a secure, instant, and low latency connectivity among the multitude data sources between the users and cloud applications.

Given the multi-tenant cloud architecture and the still existing traditional healthcare IT infrastructures, GAVS Technologies enables healthcare providers to easily migrate to the new AI enabled digital infrastructure.
Cost, transparency, and compliance with the various healthcare regulatory bodies are the biggest challenges today for healthcare institutions. With the GDPR already in effect, requiring data protection for all the collected data and its correct usage becoming mandatory, it’s vital for them to have a clear road map for their business strategies involving AI.

Here are eight ways that highlight the technologies and areas of the healthcare industry that are most likely to see a major impact from artificial intelligence.

• Brain-computer interfaces (BCI) backed by artificial intelligence can help restore the patients’ fundamental experiences of speech, movement and meaningful interaction with people and their environments, lost due to neurological diseases and trauma to the nervous system. BCI could drastically improve quality of life for patients with ALS, strokes, or locked-in syndrome, as well as the 500,000 people worldwide who experience spinal cord injuries every year.

• Artificial intelligence will enable the next generation of radiology tools that are accurate and detailed enough to replace the need for tissue samples in some cases. AI is helping to enable “virtual biopsies” and advance the innovative field of radiomics, which focuses on harnessing image-based algorithms to characterize the phenotypes and genetic properties of tumors.

• AI could help mitigate the shortages of trained healthcare providers, including ultrasound technicians and radiologists which can significantly limit access to life-saving care in developing nations around the world. This severe deficit of qualified clinical staff can be overcome by AI taking over some of the diagnostic duties typically allocated to humans.

• Electronic Health Records (EHR) have played an instrumental role in the healthcare industry’s journey towards digitalization, but this has brought along with cognitive overload, endless documentation, and user burnout. EHR developers are now using AI to create more intuitive interfaces and automate some of the routine processes that consume so much of a user’s time like clinical documentation, order entry, and sorting through their inbox mail.

• Smart devices using artificial intelligence to enhance the ability to identify patient deterioration or sense the development of complications can significantly improve outcomes and may reduce costs related to hospital-acquired condition penalties.

• Immunotherapy (using the body’s own immune system to attack malignancies) is one of best cancer treatments available now. But oncologists still do not have a precise and reliable method for identifying which patients will benefit from this option. AI and Machine learning algorithms and its ability to synthesize highly complex datasets may be able to illuminate new options for targeting therapies to an individual’s unique genetic makeup.

• AI to assimilate the health-related data generated through wearables and personal devices for better monitoring and extracting actionable insights from this large and varied data source.

• Using smartphones which have built-in AI software and hardware to collect images of eyes, skin lesions, wounds, infections, medications, or other subjects is an important supplement to clinical quality imaging especially in under-served populations or developing nations where there is a shortage of specialists while reducing the time-to-diagnosis for certain complaints. Dermatology and ophthalmology are early beneficiaries of this trend.

• Leveraging AI for clinical decision support, risk scoring, and early alerting are some of the most promising areas of development for this revolutionary approach to data analysis.

• AI allow those in training to go through naturalistic simulations in a way that simple computer-driven algorithms cannot. The advent of natural speech and the ability of an AI computer to draw instantly on a large database of scenarios, means the response to questions, decisions or advice from a trainee can be challenging and the AI training programme can learn from previous responses from the trainee.

Contact GAVS Technologies to know more about how AI will impact Healthcare here at https://www.gavstech.com/reaching-us/

READ ALSO OUR NEW UPDATES

Pivotal Role of AI and Machine Learning in Industry 4.0 and Manufacturing

Industry 4.0 is a name given to the current trend of automation and data exchange in manufacturing technologies. It includes cyber-physical systems, the Internet of things, cloud computing and cognitive computing.Industry 4.0 is commonly referred to as the fourthindustrial revolution.

Industry 4.0 is the paving the path for digitization of the manufacturing sector, where artificial intelligence (AI) and machine-learning based systems are not only changing the ways we interact with information and computers but also revolutionizing it.

Compelling reasons for most companies to shift towards Industry 4.0 and automate manufacturing include;

  • Increase productivity
  • Minimize human / manual errors
  • Optimize production costs
  • Focus human efforts on non-repetitive tasks to improve efficiency

Manufacturing is now being driven by effective data management and AI that will decide its future. The more data sets computers are fed, the more they can observe trends, learn and make decisions that benefit the manufacturing organization. This automation will help to predict failures more accurately, predict workloads, detect and anticipate problems to achieve Zero Incidence.

GAVS’ proprietary AIOps based TechOps platform – Zero Incident Framework TM (ZIF) can successfully integrate AI and machine learning into the workflow allowing manufacturers to build robust technology foundations.

To maximize the many opportunities presented by Industry 4.0, manufacturers need to build a system with the entire production process in mind as it requires collaboration across the entire supply chain cycle.

Top ways in which ZIF’s expertise in AI and ML are revolutionizing manufacturing sector:

  • Asset management, supply chain management and inventory management are the dominant areas of artificial intelligence, machine learning and IoT adoption in manufacturing today. Combining these emerging technologies, they can improve asset tracking accuracy, supply chain visibility, and inventory optimization.
  • Improve predictive maintenance through better adoption of ML techniques like analytics, Machine Intelligence driven processes and quality optimization.
  • Reduce supply chain forecasting errors and reduce lost sales to increase better product availability.
  • Real time monitoring of the operational loads on the production floor helps in providing insights into the production schedule performances.
  • Achieve significant reduction in test and calibration time via accurate prediction of calibration and test results using machine learning.
  • Combining ML and Overall Equipment Effectiveness (OEE), manufacturers can improve yield rates, preventative maintenance accuracy and workloads by the assets. OEE is a universally used metric in manufacturing as it combines availability, performance, and quality, defining production effectiveness.
  • Improving the accuracy of detecting costs of performance degradation across multiple manufacturing scenarios that reduces costs by 50% or more.

Direct benefits of Machine Learning and AI for Manufacturing

The introduction of AI and Machine Learning to industry 4.0 represents a big change for manufacturing companies that can open new business opportunities and result in advantages like efficiency improvements among others.

  • Cost reduction through Predictive Maintenance that leads to less maintenance activity, which means lower labor costs, reduced inventory and materials wastage.
  • Predicting Remaining Useful Life (RUL): Keeping tabs on the behavior of machines and equipment leads to creating conditions that improve performance while maintaining machine health. By predicting RUL, it reduces the scenarios which causes unplanned downtime.
  • Improved supply chain management through efficient inventory management and a well monitored and synchronized production flow.
  • Autonomous equipment and vehicles: Use of autonomous cranes and trucks to streamline operations as they accept containers from transport vehicles, ships, trucks etc.
  • Better Quality Control with actionable insights to constantly raise product quality.
  • Improved human-machine collaboration while improving employee safety conditions and boosting overall efficiency.
  • Consumer-focused manufacturing: Being able to respond quickly to changes in the market demand.

Touch base with GAVS AI experts here: https://www.gavstech.com/reaching-us/ and see how we can help you drive your manufacturing operation towards Industry 4.0.