AI in Healthcare

The Healthcare Industry is going through a quiet revolution. Factors like disease trends, doctor demographics, regulatory policies, environment, technology etc. are forcing the industry to turn to emerging technologies like AI, to help adapt to the pace of change. Here, we take a look at some key use cases of AI in Healthcare.

Medical Imaging

The application of Machine Learning (ML) in Medical Imaging is showing highly encouraging results. ML is a subset of AI, where algorithms and models are used to help machines imitate the cognitive functions of the human brain and to also self-learn from their experiences.

AI can be gainfully used in the different stages of medical imaging- in acquisition, image reconstruction, processing, interpretation, storage, data mining & beyond. The performance of ML computational models improves tremendously as they get exposed to more & more data and this foundation on colossal amounts of data enables them to gradually better humans at interpretation. They begin to detect anomalies not perceptible to the human eye & not discernible to the human brain!

What goes hand-in-hand with data, is noise. Noise creates artifacts in images and reduces its quality, leading to inaccurate diagnosis. AI systems work through the clutter and aid noise- reduction leading to better precision in diagnosis, prognosis, staging, segmentation and treatment.

At the forefront of this use case is Radio genomics- correlating cancer imaging features and gene expression. Needless to say, this will play a pivotal role in cancer research.

Drug Discovery

Drug Discovery is an arduous process that takes several years from the start of research to obtaining approval to market. Research involves laboring through copious amounts of medical literature to identify the dynamics between genes, molecular targets, pathways, candidate compounds. Sifting through all of this complex data to arrive at conclusions is an enormous challenge. When this voluminous data is fed to the ML computational models, relationships are reliably established. AI powered by domain knowledge is slashing down time & cost involved in new drug development.

Cybersecurity in Healthcare

Data security is of paramount importance to Healthcare providers who need to ensure confidentiality, integrity, and availability of patient data. With cyberattacks increasing in number and complexity, these formidable threats are giving security teams sleepless nights! The main strength of AI is its ability to curate massive quantities of data- here threat intelligence, nullify the noise, provide instant insights & self-learn in the process. Predictive & Prescriptive capabilities of these computational models drastically reduces response time.

Virtual Health assistants

Virtual Health assistants like Chatbots, give patients 24/7 access to critical information, in addition to offering services like scheduling health check-ups or setting up appointments. AI- based platforms for wearable health devices and health apps come armed with loads of features to monitor health signs, daily activities, diet, sleep patterns etc. and provide alerts for immediate action or suggest personalized plans to enable healthy lifestyles.

AI for Healthcare IT Infrastructure

Healthcare IT Infrastructure running critical applications that enable patient care, is the heart of a Healthcare provider. With dynamically changing IT landscapes that are distributed, hybrid & on-demand, IT Operations teams are finding it hard to keep up. Artificial Intelligence for IT Ops (AIOps) is poised to fundamentally transform the Healthcare Industry. It is powering Healthcare Providers across the globe, who are adopting it to Automate, Predict, Remediate & Prevent Incidents in their IT Infrastructure. GAVS’ Zero Incident FrameworkTM (ZIF) – an AIOps Platform, is a pure-play AI platform based on unsupervised Machine Learning and comes with the full suite of tools an IT Infrastructure team would need. Please watch this video to learn more.

READ ALSO OUR NEW UPDATES

Analyze

Have you heard of AIOps?

Artificial intelligence for IT operations (AIOps) is an umbrella term for the application of Big Data Analytics, Machine Learning (ML) and other Artificial Intelligence (AI) technologies to automate the identification and resolution of common Information Technology (IT) problems. The systems, services and applications in a large enterprise produce immense volumes of log and performance data. AIOps uses this data to monitor the assets and gain visibility into the working behaviour and dependencies between these assets.

According to a Gartner study, the adoption of AIOps by large enterprises would rise to 30% by 2023.

ZIF – The ideal AIOps platform of choice

Zero Incident FrameworkTM (ZIF) is an AIOps based TechOps platform that enables proactive detection and remediation of incidents helping organizations drive towards a Zero Incident Enterprise™

ZIF comprises of 5 modules, as outlined below.

At the heart of ZIF, lies its Analyze and Predict (A&P) modules which are powered by Artificial Intelligence and Machine Learning techniques. From the business perspective, the primary goal of A&P would be 100% availability of applications and business processes.

Come, let us understand more about the Analyze function of ZIF.

With Analyzehaving a Big Data platform under its hood, volumes of raw monitoring data, both structured and unstructured, can be ingested and grouped to build linkages and identify failure patterns.

Data Ingestion and Correlation of Diverse Data

The module processes a wide range of data from varied data sources to break siloes while providing insights, exposing anomalies and highlighting risks across the IT landscape. It increases productivity and efficiency through actionable insights.

  • 100+ connectors for leading tools, environments and devices
  • Correlation and aggregation methods uncover patterns and relationships in the data

Noise Nullification

Eliminates duplicate incidents, false positives and any alerts that are insignificant. This also helps reduce the Mean-Time-To-Resolution and event-to-incident ratio.

  • Deep learning algorithms isolate events that have the potential to become incidents along with their potential criticality
  • Correlation and Aggregation methods group alerts and incidents that are related and needs a common remediation
  • Reinforcement learning techniques are applied to find and eliminate false positives and duplicates

Event Correlation

Data from various sources are ingested real-time into ZIF either by push or pull mechanism. As the data is ingested, labelling algorithms are run to label the data based on identifiers. The labelled data is passed through the correlation engine where unsupervised algorithms are run to mine the patterns. Sub-sequence mining algorithms help in identifying unique patterns from the data.

Unique patterns identified are clustered using clustering algorithms to form cases. Every case that is generated is marked by a unique case id. As part of the clustering process, seasonality aspects are checked from historical transactions to derive higher accuracy of correlation.

Correlation is done based on pattern recognition, helping to eliminate the need for relational CMDB from the enterprise. The accuracy of the correlation increases as patterns reoccur. Algorithms also can unlearn patterns based on the feedback that can be provided by actions taken on correlation. As these are unsupervised algorithms, the patterns are learnt with zero human intervention.

Accelerated Root Cause Analysis (RCA)

Analyze module helps in identifying the root causes of incidents even when they occur in different silos. Combination of correlation algorithms with unsupervised deep learning techniques aid in accurately nailing down the root causes of incidents/problems. Learnings from historical incidents are also applied to find root causes in real-time. The platform retraces the user journeys step-by-step to identify the exact point where an error occurs.

Customer Success Story – How ZIF’s A&P transformed IT Operations of a Manufacturing Giant

  • Seamless end-to-end monitoring – OS, DB, Applications, Networks
  • Helped achieve more than 50% noise reduction in 6 months
  • Reduced P1 incidents by ~30% through dynamic and deep monitoring
  • Achieved declining trend of MTTR and an increasing trend of Availability
  • Resulted in optimizingcommand centre/operations head count by ~50%
  • Resulted in ~80% reduction in operations TCO

For more detailed information on GAVS’ Analyze, or to request a demo please visit zif.ai/products/analyze

References: www.gartner.com/smarterwithgartner/how-to-get-started-with-aiops

ABOUT THE AUTHOR

Vasudevan Gopalan


Vasu heads Engineering function for A&P. He is a Digital Transformation leader with ~20 years of IT industry experience spanning across Product Engineering, Portfolio Delivery, Large Program Management etc. Vasu has designed and delivered Open Systems, Core Banking, Web / Mobile Applications etc.

Outside of his professional role, Vasu enjoys playing badminton and focusses on fitness routines.

READ ALSO OUR NEW UPDATES

Is Your Investment in TRUE AI?

Yes, AIOps the messiah of ITOps is here to stay! The Executive decision now is on the who and how, rather than when. With a plethora of products in the market offering varying shades of AIOps capabilities, choosing the right vendor is critical, to say the least.

Exclusively AI-based Ops?

Simply put, AIOps platforms leverage Big Data & AI technologies to enhance IT operations. Gartner defines Acquire, Aggregate, Analyze & Act as the four stages of AIOps. These four fall under the purview of Monitoring tools, AIOps Platforms & Action Platforms. However, there is no Industry-recognized mandatory feature list to be supported, for a Platform to be classified as AIOps. Due to this ambiguity in what an AIOps Platform needs to Deliver, huge investments made in rosy AIOps promises can lead to sub-optimal ROI, disillusionment or even derailed projects. Some Points to Ponder…

  • Quality in, Quality out. The value delivered from an AIOps investment is heavily dependent on what data goes into the system. How sure can we be that IT Asset or Device monitoring data provided by the Customer is not outdated, inaccurate or patchy? How sure can we be that we have full visibility of the entire IT landscape? With Shadow IT becoming a tacitly approved aspect of modern Enterprises, are we seeing all devices, applications and users? Doesn’t this imply that only an AIOps Platform providing Application Discovery & Topology Mapping, Monitoring features would be able to deliver accurate insights?
  • There is a very thin line between Also AI and Purely AI. Behind the scenes, most AIOps Platforms are reliant on CMDB or similar tools, which makes Insights like Event Correlation, Noise Reduction etc., rule-based. Where is the AI here?
  • In Gartner’s Market Guide, apart from support features for the different data types, Automated Pattern Discovery is the only other Capability taken into account for the Capabilities of AIOps Vendors matrix. With Gartner being one of the most trusted Technology Research and Advisory companies, it is natural for decision makers to zero-in on one of these listed vendors. What is not immediately evident is that there is so much more to AIOps than just this, and with so much at stake, companies need to do their homework and take informed decisions before finalizing their vendor.
  • Most AIOps vendors ingest, provide access to & store heterogenous data for analysis, and provide actionable Insights and RCA; at which point the IT team takes over. This is a huge leap forward, since it helps IT work through the data clutter and significantly reduces MTTR. But, due to the absence of comprehensive Predictive, Prescriptive & Remediation features, these are not end-to-end AIOps Platforms.
  • At the bleeding edge of the Capability Spectrum is Auto-Remediation based on Predictive & Prescriptive insights. A Comprehensive end-to-end AIOps Platform would need to provide a Virtual Engineer for Auto-Remediation. But, this is a grey area not fully catered to by AIOps vendors.  

The big question now is, if an AIOps Platform requires human intervention or multiple external tools to take care of different missing aspects, can it rightfully claim to be true end-to-end AIOps?

So, what do we do?

Time for you to sit back and relax! Introducing ZIF- One Solution for all your ITOps ills!

We have you completely covered with the full suite of tools that an IT infrastructure team would need. We deliver the entire AIOps Capability spectrum and beyond.

ZIF (Zero Incident Framework™) is an AIOps based TechOps platform that enables proactive Detection and Remediation of incidents helping organizations drive towards a Zero Incident Enterprise™.

The Key Differentiator is that ZIF is a Pure-play AI Platform powered by Unsupervised Pattern-based Machine Learning Algorithms. This is what sets us a Class Apart.

  • Rightly aligns with the Gartner AIOps strategy. ZIF is based on and goes beyond the AIOps framework
  • Huge Investments in developing various patented AI Machine Learning algorithms, Auto-Discovery modules, Agent & Agentless Application Monitoring tools, Network sniffers, Process Automation, Remediation & Orchestration capabilities to form Zero Incident Framework™
  • Powered entirely by Unsupervised Pattern-based Machine Learning Algorithms, ZIF needs no further human intervention and is completely Self-Reliant
  • Unsupervised ML empowers ZIF to learn autonomously, glean Predictive & Prescriptive Intelligence and even uncover Latent Insights
  • The 5 Modules can work together cohesively or as independent stand-alone components
  • Can be Integrated with existing Monitoring and ITSM tools, as required
  • Applies LEAN IT Principle and is on an ambitious journey towards FRICTIONLESS IT.

Realizing a Zero Incident EnterpriseTM