Cloud Adoption, Challenges, and Solution Through Monitoring, AI & Automation

Cloud Adoption

Cloud computing is the delivery of computing services including Servers, Database, Storage, Networking & others over the internet. Public, Private & Hybrid clouds are different ways of deploying cloud computing.  

  • In public cloud, the cloud resources are owned by 3rd party cloud service provider
  • A private cloud consists of computing resources exclusively by one business or organization
  • Hybrid provides the best of both worlds, combines on-premises infrastructure, private cloud with public cloud

Microsoft, Google, Amazon, Oracle, IBM, and others are providing cloud platform to users to host and experience practical business solution. The worldwide public cloud services market is forecast to grow 17% in 2020 to total $266.4 billion and $354.6 billion in 2022, up from $227.8 billion in 2019, per Gartner, Inc.

There are various types of Instances, workloads & options available as part of cloud ecosystem, i.e. IaaS, PaaS, SaaS, Multi-cloud, Serverless.

Challenges

When very large, large and medium enterprise decides to move their IT environment from on-premise to cloud, they try to move some/most of their on-premises into cloud and keep the rest under their control on-premise. There are various factors that impact the decision, to name a few,

  1. ROI vs Cost of Cloud Instance, Operation cost
  2. Architecture dependency of the application, i.e. whether it is monolithic or multi-tier or polyglot or hybrid cloud
  3. Requirement and need for elasticity and scalability
  4. Availability of right solution from the cloud provider
  5. Security of some key data

After crossing all, once the IT environment is cloud-enabled, the challenge comes in ensuring the monitoring of the Cloud-enabled IT environment. Here are some of the business and IT challenges

1. How to ensure the various workloads & Instances are working as expected?

While the cloud provider may give high availability & up time depending on the tier we choose, it is important that our IT team monitors the environment, as in the case of IaaS and to some extent in PaaS as well.

2. How to ensure the Instances are optimally used in terms of compute and storage?

Cloud providers give most of the metrics around the Instances, though it may not provide all metrics that we may need to make decision in all scenarios.

The disadvantage with this model is, cost, latency & not straight forward, e.g. the LOG analytics which comes in Azure involves cost for every MB/GB of data that is stored and the latency in getting the right metrics at right time, if there is latency/delay, you may not get a right result

3. How to ensure the Application or the components of a single solution that are spread across on-premise and Cloud environment is working as expected?

Some cloud providers give tools for integrating the metrics from on-premise to cloud environment to have a shared view.

The disadvantage with this model is, it is not possible to bring in all sorts of data together to get the insights straight. That is, observability is always a question. The ownership of getting the observability lies with the IT team who handles the data.

4. How to ensure the Multi-Cloud + On-Premise environment is effectively monitored & utilized to ensure the best End-user experience?

Multi-Cloud environment – With rapid growing Microservices Architecture & Container based cloud enabled model, it is quite natural that the Enterprise may choose the best from different cloud providers like Azure, AWS, Google & others.

There is little support from cloud provider on this space. In fact, some cloud providers do not even support this scenario.

5. How to get a single panel of view for troubleshooting & root cause analysis?

Especially when problem occurs in Application, Database, Middle Tier, Network & 3rd party layers that are spread across multi-cluster, multi-cloud, elastic environment, it is very important to get a Unified view of entire environment.

ZIF (Zero Incident FrameworkTM), provides a single platform for Cloud Monitoring.

ZIF has Discovery, Monitoring, Prediction & Remediate that seamlessly fits for a cloud enabled solution. ZIF provides the unified dashboard with insights across all layers of IT infrastructure that is distributed across On-premise host, Cloud Instance & Containers.

Core features & benefits of ZIF for Cloud Monitoring are,

1. Discovery & Topology

  • Discovers and provides dynamic mapping of resources across all layers.
  • Provides real-time mapping of applications and its dependent layers irrespective of whether the components live on-premise, or on cloud or containerized in cloud.
  • Dynamically built topology of all layers which helps in taking effective decisions.

2. Observability across Multi-Cloud, Hybrid-Cloud & On-Premise tiers

  • It is not just about collecting metrics; it is very important to analyze the monitored data and provide meaningful insights.
  • When the IT infrastructure is spread across multiple cloud platform like Azure, AWS, Google Cloud, and others, it is important to get a unified view of your entire environment along with the on-premise servers.
  • Health of each layers are represented in topology format, this helps to understand the impact and take necessary actions.

3. Prediction driven decision for resource optimization

  • Prediction engine analyses the metrics of cloud resources and predicts the resource usage. This helps the resource owner to make proactive action rather than being reactive.
  • Provides meaningful insights and alerts in terms of the surge in the load, the growth in number of VMs, containers, and the usage of resource across other workloads.
  • Authorize the Elasticity & Scalability through real-time metrics.

4. Container & Microservice support

  • Understand the resource utilization of your containers that are hosted in Cloud & On-Premise.
  • Know the bottlenecks around the Microservices and tune your environment for the spikes in load.
  • Provides full support for monitoring applications distributed across your local host & containers in cloud in a multi-cluster setup.

5. Root cause analysis made simple

  • Quick root cause analysis by analysing various causes captured by ZIF Monitor instead of going through layer by layer. This saves time to focus on problem-solving and arresting instead of spending effort on identifying the root cause.
  • Provides insights across your workload including the impact due to 3rd party layers as well.

6. Automation

  • Irrespective of whether the workload and instance is on-premise or on Azure or AWS or other provider, the ZIF automation module can automate the basics to complex activities

7. Ensure End User Experience

  • Helps to improve the end-user experience who gets served by the workload from cloud.
  • The ZIF tracing helps to trace each & every request of each & every user, thereby it is quite natural for ZIF to unearth the performance bottleneck across all layers, which in turn helps to address the problem and thereby improve the User Experience

Cloud and Container Platform Support

ZIF Seamlessly integrates with following Cloud & Container environments,

  • Microsoft Azure
  • AWS
  • Google Cloud
  • Grafana Cloud
  • Docker
  • Kubernetes

About the Author

Suresh Kumar Ramasamy-Picture

Suresh Kumar Ramasamy


Suresh heads the Monitor component of ZIF at GAVS. He has 20 years of experience in Native Applications, Web, Cloud, and Hybrid platforms from Engineering to Product Management. He has designed & hosted the monitoring solutions. He has been instrumental in conglomerating components to structure the Environment Performance Management suite of ZIF Monitor.

Suresh enjoys playing badminton with his children. He is passionate about gardening, especially medicinal plants.

Growing Importance of Business Service Reliability

Business services are a set of business activities delivered to an outside party, such as a customer or a partner. Successful delivery of business services often depends on one or more IT services. For example, an IT business service that would support “order to cash”, as an example could be “supply chain service”. The supply chain service could be delivered by an application such as SAP, with the customer of that service being an employee in finance/accounting using the application to perform customer-facing services such as accounts receivable, or the collection of cash from an outside party. A business service is not simply the application that the end-user sees – it is the entire chain that supports the delivery of the service, including physical and virtualized servers, databases, middleware, storage, and networks. A failure in any of these can affect the service – and so it is crucial that IT organizations have an integrated, accurate, and up-to-date view of these components and of how they work together to provide the service.

The technologies for Social Networking, Mobile Applications, Analytics, Cloud (SMAC), and Artificial Intelligence (AI) are redefining the business and the services that businesses provide. Their widespread usage is changing the business landscape, increasing reliability and availability to levels that were unimaginable even a few years ago.

Availability versus Reliability

At first glance, it might seem that if a service has a high availability then it should also have high reliability. However, this is not necessarily the case. Availability and Reliability have different meanings, serve different purposes, and require different strategies to maintain desired standards of service levels. Reliability is the measure of how long a business service performs its intended function, whereas availability is the measure of the percentage of time a business service is operable. For example, a business service may be available 90% of the time, but reliable only 75% of the time from a performance standpoint. Service reliability can be seen as:

  • Probability of success
  • Durability
  • Dependability
  • Quality over time
  • Availability to perform a function

Merely having a service available isn’t sufficient. When a business service is available, it should actually serve the intended purpose under varying and unexpected conditions. One way to measure this performance is to evaluate the reliability of the service that is available to consume. The performance of a business service is now rated not by its availability, but by how consistently reliable it is. Take the example of mobile services – 4 bars of signal strength on your smartphone does not guarantee that the quality of the call you received or going to make. Organizations need to measure how well the service fulfills the necessary business performance needs.

Recognizing the importance of reliability, Google initiated Site Reliability Engineering (SRE) practices with a mission to protect, provide for, and progress the software and systems behind all of Google’s public services — Google Search, Ads, Gmail, Android, YouTube, and App Engine, to name just a few — with an ever-watchful eye on their availability, latency, performance, and capacity.

Zero Incident FrameworkTM (ZIF)

GAVS Technologies developed an AIOps based TechOps platform – Zero Incident FrameworkTM (ZIF) that enables proactive detection and remediation of incidents. The ZIF Platform is, available in two versions for our customers to evaluate and experience the power of AI-driven Business Service Reliability: 

ZIF Business Xpress: ZIF Business Xpress has been engineered for enterprises to evaluate AIOps before adoption. 10 to 40 devices can be connected to ZIFBusiness Xpress, to experiment with the value proposition. 

ZIF Business: Targeted for enterprise-wide adoption.

For more details, please visit https://zif.ai

About the Author:

Sri Chaganty


Sri is a Serial Entrepreneur with over 30 years’ experience delivering creative, client-centric, value-driven solutions for bootstrapped, and venture-backed startups.

Machine Learning: Building Clustering Algorithms

Gireesh Sreedhar KP


Clustering is a widely-used Machine Learning (ML) technique. Clustering is an Unsupervised ML algorithm that is built to learn patterns from input data without any training, besides being able of processing data with high dimensions. This makes clustering the method of choice to solve a wide range and variety of ML problems.

Since clustering is widely used, for Data Scientists and ML Engineer’s it is critical to understand how to practically build clustering algorithms even though many of us have a high-level understanding of clustering. Let us understand the approach to build a clustering algorithm from scratch.

What is Clustering and how does it work?

Clustering is finding groups of objects (data) such that objects in the same group will be similar (related) to one another and different from (unrelated to) objects in other groups.

Clustering works on the concept of Similarity/Dissimilarity between data points. The higher similarity between data points, the more likely these data points will belong to the same cluster and higher the dissimilarity between data points, the more likely these data points will be kept out of the same cluster.

Similarity is the numerical measure of how alike two data objects are. Similarity will be higher when objects are more alike. Dissimilarity is the numerical measure of how different two data objects. Dissimilarity is lower when objects are more alike.

We create a ‘Dissimilarity Matrix’ (also called Distance Matrix) as an input to a clustering algorithm, where the dissimilarity matrix gives algorithm the notion of dissimilarity between objects. We build a dissimilarity matrix for each attribute of data considered for clustering and then combine the dissimilarity matrix for each data attribute to form an overall dissimilarity matrix. The dissimilarity matrix is an NxN square matrix where N is the number of data points considered for clustering and each element of the NxN square matrix gives dissimilarity between two objects.

Building Clustering Algorithm

Building a clustering algorithm involve the following:

  • Selection of most suited clustering techniques and algorithms to solve the problem. This step needs close collaboration among SMEs, business users, data scientists, and ML engineers. Based on inputs and data study, a possible list of algorithms (one or more) is selected for modeling and development along with tuning parameters are decided (to give algorithm more flexibility for tuning and learning from SME).
  • The selection of data attributes for the formulation of the dissimilarity matrix and methodology for the formation of the dissimilarity matrix (discussed later).
  • Building algorithms and doing the Design of experiments to select the best-suited algorithm and algorithm parameters for implementation.
  • Implementation of algorithm and fine-tuning of parameters as required.

Building a Dissimilarity matrix:

There are different approaches to build a dissimilarity matrix, here we consider building a dissimilarity matrix containing the distance (called Distance Matrix) between data objects (another alternative approach is to feed in coordinate points and let the algorithm compute distance). Let us consider a group of N data objects to be clustered based on three data attributes of each data object. The steps for building a Distance matrix are:

Build a Distance matrix for individual data attributes. Here we build three individual distance matrices (one for each attribute) containing distance between data objects calculated for each attribute. The data is always scaled between [0,1] using one of the standard normalization methods such as Min-Max Scalar. Here is how the distance matrix for an attribute looks like.

Properties of Distance Matrix:

  1. Distance Matrix is NxN square matrix (N – number of objects in clustering space)
  2. Matrix is symmetric with diagonal as zero (zero diagonal as distance of an object from itself is zero)
  3. For categorical data, distance between two points = 0, if both are same; =1 otherwise
  4. For numeric/ordered data, distance between two points = difference between scaled attribute values of two points.

Build Complete Distance matrix. Here we build a complete distance matrix combining distance matrix of individual attributes forming the input for clustering algorithm.

Complete distance matrix = (element-wise sum of individual attribute level matrix)/3;

Generalized Complete distance matrix = (element-wise sum of individual attribute level matrix)/M, where M is the number of attribute level matrix formed.

Considerations for the selection of clustering algorithms:

Before the selection of a clustering algorithm, the following considerations need to be evaluated to identify the right clustering algorithms for the given problem.

  • Partition criteria: Single Level vs hierarchical portioning
  • Separation of clusters: Exclusive (one data point belongs to only one class) vs non-exclusive (one data point can belong to more than one class)
  • Similarity measures: Distance-based vs Connectivity-based
  • Clustering space: Full space (used when low dimension data is processed) vs Subspace (used when high dimension data is processed, where only subspace can be processed and interesting clustering can be formed)
  • Attributes processing: Ability to deal with different types of attributes: Numerical, Categorical, Text, Media, a combination of data types in inputs
  • Discovery of clusters: Ability to form a predefined number of clusters or an arbitrary number of clusters
  • Ability to deal with noise in data
  • Scalability to deal with huge volumes of data, high dimensionality, incremental, or streaming data.
  • Ability to deal with constraints on user preference and domain requirements.

Application of Clustering

There are broadly two applications of clustering.

As an ML tool to get insight into data. Like building Recommendation Systems or Customer segmentation by clustering like-minded users or similar products, Social network analysis, Biological data analysis like Gene/Protein sequence analysis, etc.

As a pre-processing or intermediate step for other classes of algorithms. Like some Pattern-mining algorithms use clustering to group patterns mined and select most representative patterns instead of selecting entire patterns mined.

Conclusion

Building ML algorithm is teamwork with a team consisting of SMEs, users, data scientists, and ML engineers, each playing their part for success. The article gives steps to build a clustering algorithm, this can be used as reference material while attempting to build your algorithm.

About the Author:

Gireesh is a part of the projects run in collaboration with IIT Madras for developing AI solutions and algorithms. His interest includes Data Science, Machine Learning, Financial markets, and Geo-politics. He believes that he is competing against himself to become better than who he was yesterday. He aspires to become a well-recognized subject matter expert in the field of Artificial Intelligence.

Assess Your Organization’s Maturity in Adopting AIOps

Artificial Intelligence for IT operations (AIOps) is adopted by organizations to deliver tangible Business Outcomes. These business outcomes have a direct impact on companies’ revenue and customer satisfaction.

A survey from AIOps Exchange 2019, reports that 84% of Business Owners who attended the survey, confirmed that they are actively evaluating AIOps to be adopted in their organizations.

So, is AIOps just automation? Absolutely NOT!!

Artificial Intelligence for IT operations implies the implementation of true Autonomous Artificial Intelligence in ITOps, which needs to be adopted as an organization-wide strategy. Organizations will have to assess their existing landscape, processes, and decide where to start. That is the only way to achieve the true implementation of AIOps.

Every organization trying to evaluate AIOps as a strategy should read through this article to understand their current maturity, and then move forward to reach the pinnacle of Artificial Intelligence in IT Operations.

The primary Success Factor in adopting AIOps is derived from the Business Outcomes the organization is trying to achieve by implementing AIOps –that is the only way to calculate ROI.

There are 4 levels of Maturity in AIOps adoption. Based on our experience in developing an AIOps platform and implementing the platform across multiple industries, we have arrived at these 4 levels. Assessing an organization against each of these levels helps in achieving the goal of TRUE Artificial Intelligence in IT Operations.

Level 1: Knee-jerk

Events, logs are generated in silos and collected from various applications and devices in the infrastructure. These are used to generate alerts that are commissioned to command centres to escalate as per the SOPs (standard operating procedures) defined. The engineering teams work in silos, not aware of the business impact that these alerts could potentially create. Here, operations are very reactive which could cost the organization millions of dollars.

Level 2: Unified

Have integrated all events, logs, and alerts into one central locale. ITSM process has been unified. This helps in breaking silos and engineering teams are better prepared to tackle business impacts. SOPs have been adjusted since the process is unified, but this is still reactive incident management.

Level 3: Intelligent

Machine Learning algorithms (either supervised or unsupervised) have been implemented on the unified data to derive insights. There are baseline metrics that are calibrated and will be used as a reference for future events. With more data, the metrics get richer. IT operations team can correlate incidents/events with business impacts by leveraging AI & ML. If Mean Time To Resolve (MTTR) an incident has been reduced by automated identification of the root cause, then the organization has attained level 3 maturity in AIOps.

Level 4: Predictive & Autonomous

The pinnacle of AIOps is level 4. If incidents and performance degradation of applications can be predicted by leveraging Artificial Intelligence, it implies improved application availability. Autonomousremediation bots can be triggered spontaneously based on the predictive insights, to fix incidents that are prone to happen in the enterprise. Level 4 is a paradigm shift in IT operations – moving operations entirely from being reactive, to becoming proactive.

Conclusion:

As IT operations teams move up each level, the essential goal to keep in mind is the long-term strategy that needs to be attained by adopting AIOps. Artificial Intelligence has matured over the past few decades, and it is up to AIOps platforms to embrace it effectively. While choosing an AIOps platform, measure the maturity of the platform’s artificial intelligent coefficient.

About the Author:

Anoop Aravindakshan (Principal Consultant Manager) at GAVS Technologies.


An evangelist of Zero Incident FrameworkTM, Anoop has been a part of the product engineering team for long and has recently forayed into product marketing. He has over 14 years of experience in Information Technology across various verticals, which include Banking, Healthcare, Aerospace, Manufacturing, CRM, Gaming, and Mobile.

Prediction for Business Service Assurance

Artificial Intelligence for IT operations or AIOps has exploded over the past few years. As more and more enterprises set about their digital transformation journeys, AIOps becomes imperative to keep their businesses running smoothly. 

AIOps uses several technologies like Machine Learning and Big Data to automate the identification and resolution of common Information Technology (IT) problems. The systems, services, and applications in a large enterprise produce volumes of log and performance data. AIOps uses this data to monitor the assets and gain visibility into the behaviour and dependencies among these assets.

According to a Gartner publication, the adoption of AIOps by large enterprises would rise to 30% by 2023.

ZIF – The ideal AIOps platform of choice

Zero Incident FrameworkTM (ZIF) is an AIOps based TechOps platform that enables proactive detection and remediation of incidents helping organizations drive towards a Zero Incident Enterprise™.

ZIF comprises of 5 modules, as outlined below.

At the heart of ZIF, lies its Analyze and Predict (A&P) modules which are powered by Artificial Intelligence and Machine Learning techniques. From the business perspective, the primary goal of A&P would be 100% availability of applications and business processes.

Let us understand more about thePredict module of ZIF.

Predictive Analytics is one of the main USP of the ZIF platform. ZIF encompassesSupervised, Unsupervised and Reinforcement Learning algorithms for realization of various business use cases (as shown below).

How does the Predict Module of ZIF work?

Through its data ingestion capabilities, the ZIF platform can receive and process all types of data (both structured and unstructured) from various tools in the enterprise. The types of data can be related to alerts, events, logs, performance of devices, relations of devices, workload topologies, network topologies etc. By analyzing all these data, the platform predicts the anomalies that can occur in the environment. These anomalies get presented as ‘Opportunity Cards’ so that suitable action can be taken ahead of time to eliminate any undesired incidents from occurring. Since this is ‘Proactive’ and not ‘Reactive’, it brings about a paradigm shift to any organization’s endeavour to achieve 100% availability of their enterprise systems and platforms. Predictions are done at multiple levels – application level, business process level, device level etc.

Sub-functions of Prediction Module

How does the Predict module manifest to enterprise users of the platform?

Predict module categorizes the opportunity cards into three swim lanes.

  1. Warning swim lane – Opportunity Cards that have an “Expected Time of Impact” (ETI) beyond 60 minutes.
  2. Critical swim lane – Opportunity Cards that have an ETI within 60 minutes.
  3. Processed / Lost– Opportunity Cards that have been processed or lost without taking any action.

Few of the enterprises that realized the power of ZIF’s Prediction Module

  • A manufacturing giant in the US
  • A large non-profit mental health and social service provider in New York
  • A large mortgage loan service provider in the US
  • Two of the largest private sector banks in India

For more detailed information on GAVS’ Analyze, or to request a demo please visithttps://zif.ai/products/predict/

References:https://www.gartner.com/smarterwithgartner/how-to-get-started-with-aiops/

About the Author:

Vasudevan Gopalan

Vasu heads Engineering function for A&P. He is a Digital Transformation leader with ~20 years of IT industry experience spanning across Product Engineering, Portfolio Delivery, Large Program Management etc. Vasu has designed and delivered Open Systems, Core Banking, Web / Mobile Applications etc.

Outside of his professional role, Vasu enjoys playing badminton and focusses on fitness routines.

Discover, Monitor, Analyze & Predict COVID-19

Uber, the world’s largest taxi company, owns no vehicles. Facebook, the world’s most popular media owner, creates no content. Alibaba, the most valuable retailer, has no inventory. Netflix, the world’s largest movie house, own no cinemas. And Airbnb, the world’s largest accommodation provider, owns no real estate. Something interesting is happening.”

– Tom Goodwin, an executive at the French media group Havas.

This new breed of companies is the fastest growing in history because they own the customer interface layer. It is the platform where all the value and profit is. “Platform business” is a more wholesome termfor this model for which data is the fuel; Big Data & AI/ML technologies are the harbinger of new waves of productivity growth and innovation.

With Big data and AI/ML is making a big difference in the area of public health, let’s see how it is helping us tackle the global emergency of coronavirus formally known as COVID-19.

“With rapidly spreading disease, a two-week lag is an eternity.”

DISCOVERING/ DETECTING

Chinese technology giant Alibaba has developed an AI system for detecting the COVID-19 in CT scans of patients’ chests with 96% accuracy against viral pneumonia cases. It only takes 20 seconds for the AI to decide, whereas humans generally take about 15 minutes to diagnose the illness as there can be upwards of 300 images to evaluate.The system was trained on images and data from 5,000 confirmed coronavirus cases and has been tested in hospitals throughout China. Per a report, at least 100 healthcare facilities are currently employing Alibaba’s AI to detect COVID-19.

Ping An Insurance (Group) Company of China, Ltd (Ping An) aims to address the issue of lack of radiologists by introducing the COVID-19 smart image-reading system. This image-reading system can read the huge volumes of CT scans in epidemic areas.

Ping An Smart Healthcare uses clinical data to train the AI model of the COVID-19 smart image-reading system. The AI analysis engine conducts a comparative analysis of multiple CT scan images of the same patient and measures the changes in lesions. It helps in tracking the development of the disease, evaluation of the treatment and in prognosis of patients.Ultimately it assists doctors to diagnose, triage and evaluate COVID-19 patients swiftly and effectively.

Ping An Smart Healthcare’s COVID-19 smart image-reading system also supports AI image-reading remotely by medical professionals outside the epidemic areas.Since its launch, the smart image-reading system has provided services to more than 1,500 medical institutions. More than 5,000 patients have received smart image-reading services for free.

The more solutions the better. At least when it comes to helping overwhelmed doctors provide better diagnoses and, thus, better outcomes.

MONITORING

  • AI based Temperature monitoring & scanning

In Beijing, China, subway passengers are being screened for symptoms of coronavirus, but not by health authorities. Instead, artificial intelligence is in-charge.

Two Chinese AI giants, Megvii and Baidu, have introduced temperature-scanning. They have implemented scanners to detect body temperature and send alerts to company workers if a person’s body temperature is high enough to constitute a fever.

Megvii’s AI system detects body temperatures for up to 15 people per second andup to 16 feet. It monitors as many as 16 checkpoints in a single station. The system integrates body detection, face detection, and dual sensing via infrared cameras and visible light. The system can accurately detect and flag high body temperature even when people are wearing masks, hats, or covering their faces with other items. Megvii’s system also sends alerts to an on-site staff member.

Baidu, one of the largest search-engine companies in China, screens subway passengers at the Qinghe station with infrared scanners. It also uses a facial-recognition system, taking photographs of passengers’ faces. If the Baidu system detects a body temperature of at least 99-degrees Fahrenheit, it sends an alert to the staff member for another screening. The technology can scan the temperatures of more than 200 people per minute.

  • AI based Social Media Monitoring

An international team is using machine learning to scour through social media posts, news reports, data from official public health channels, and information supplied by doctors for warning signs of the virus across geographies.The program is looking for social media posts that mention specific symptoms, like respiratory problems and fever, from a geographic area where doctors have reported potential cases. Natural language processing is used to parse the text posted on social media, for example, to distinguish between someone discussing the news and someone complaining about how they feel.

The approach has proven capable of spotting a coronavirus needle in a haystack of big data. This technique could help experts learn how the virus behaves. It may be possible to determine the age, gender, and location of those most at risk quicker than using official medical sources.

PREDICTING

Data from hospitals, airports, and other public locations are being used to predict disease spread and risk. Hospitals can also use the data to plan for the impact of an outbreak on their operations.

Kalman Filter

Kalman filter was pioneered by Rudolf Emil Kalman in 1960, originally designed and developed to solve the navigation problem in the Apollo Project. Since then, it has been applied to numerous cases such as guidance, navigation, and control of vehicles, computer vision’s object tracking, trajectory optimization, time series analysis in signal processing, econometrics and more.

Kalman filter is a recursive algorithm which uses time-series measurement over time, containing statistical noise and produce estimations of unknown variables.

For the one-day prediction Kalman filter can be used, while for the long-term forecast a linear model is used where its main features are Kalman predictors, infected rate relative to population, time-depended features, and weather history and forecasting.

The one-day Kalman prediction is very accurate and powerful while a longer period prediction is more challenging but provides a future trend.Long term prediction does not guarantee full accuracy but provides a fair estimation following the recent trend. The model should re-run daily to gain better results.

GitHub Link: https://github.com/Rank23/COVID19

ANALYZING

The Center for Systems Science and Engineering at Johns Hopkins University has developed an interactive, web-based dashboard that tracks the status of COVID-19 around the world. The resource provides a visualization of the location and number of confirmed COVID-19 cases, deaths and recoveries for all affected countries.

The primary data source for the tool is DXY, a Chinese platform that aggregates local media and government reports to provide COVID-19 cumulative case totals in near real-time at the province level in China and country level otherwise. Additional data comes from Twitter feeds, online news services and direct communication sent through the dashboard. Johns Hopkins then confirms the case numbers with regional and local health departments. This kind of Data analytics platform plays a pivotal role in addressing the coronavirus outbreak.

All data from the dashboard is also freely available in the following GitHub repository.

GitHub Link:https://bit.ly/2Wmmbp8

Mobile version: https://bit.ly/2WjyK4d

Web version: https://bit.ly/2xLyT6v

Conclusion

One of AI’s core strengths when working on identifying and limiting the effects of virus outbreaks is its incredibly insistent nature. AIsystems never tire, can sift through enormous amounts of data, and identify possible correlations and causations that humans can’t.

However, there are limits to AI’s ability to both identify virus outbreaks and predict how they will spread. Perhaps the best-known example comes from the neighboring field of big data analytics. At its launch, Google Flu Trends was heralded as a great leap forward in relation to identifying and estimating the spread of the flu—until it underestimated the 2013 flu season by a whopping 140 percent and was quietly put to rest.Poor data quality was identified as one of the main reasons Google Flu Trends failed. Unreliable or faulty data can wreak havoc on the prediction power of AI.

References:

About the Author:

Bargunan Somasundaram

Bargunan Somasundaram

Bargunan is a Big Data Engineer and a programming enthusiast. His passion is to share his knowledge by writing his experiences about them. He believes “Gaining knowledge is the first step to wisdom and sharing it is the first step to humanity.”

AI in Healthcare

The Healthcare Industry is going through a quiet revolution. Factors like disease trends, doctor demographics, regulatory policies, environment, technology etc. are forcing the industry to turn to emerging technologies like AI, to help adapt to the pace of change. Here, we take a look at some key use cases of AI in Healthcare.

Medical Imaging

The application of Machine Learning (ML) in Medical Imaging is showing highly encouraging results. ML is a subset of AI, where algorithms and models are used to help machines imitate the cognitive functions of the human brain and to also self-learn from their experiences.

AI can be gainfully used in the different stages of medical imaging- in acquisition, image reconstruction, processing, interpretation, storage, data mining & beyond. The performance of ML computational models improves tremendously as they get exposed to more & more data and this foundation on colossal amounts of data enables them to gradually better humans at interpretation. They begin to detect anomalies not perceptible to the human eye & not discernible to the human brain!

What goes hand-in-hand with data, is noise. Noise creates artifacts in images and reduces its quality, leading to inaccurate diagnosis. AI systems work through the clutter and aid noise- reduction leading to better precision in diagnosis, prognosis, staging, segmentation and treatment.

At the forefront of this use case is Radio genomics- correlating cancer imaging features and gene expression. Needless to say, this will play a pivotal role in cancer research.

Drug Discovery

Drug Discovery is an arduous process that takes several years from the start of research to obtaining approval to market. Research involves laboring through copious amounts of medical literature to identify the dynamics between genes, molecular targets, pathways, candidate compounds. Sifting through all of this complex data to arrive at conclusions is an enormous challenge. When this voluminous data is fed to the ML computational models, relationships are reliably established. AI powered by domain knowledge is slashing down time & cost involved in new drug development.

Cybersecurity in Healthcare

Data security is of paramount importance to Healthcare providers who need to ensure confidentiality, integrity, and availability of patient data. With cyberattacks increasing in number and complexity, these formidable threats are giving security teams sleepless nights! The main strength of AI is its ability to curate massive quantities of data- here threat intelligence, nullify the noise, provide instant insights & self-learn in the process. Predictive & Prescriptive capabilities of these computational models drastically reduces response time.

Virtual Health assistants

Virtual Health assistants like Chatbots, give patients 24/7 access to critical information, in addition to offering services like scheduling health check-ups or setting up appointments. AI- based platforms for wearable health devices and health apps come armed with loads of features to monitor health signs, daily activities, diet, sleep patterns etc. and provide alerts for immediate action or suggest personalized plans to enable healthy lifestyles.

AI for Healthcare IT Infrastructure

Healthcare IT Infrastructure running critical applications that enable patient care, is the heart of a Healthcare provider. With dynamically changing IT landscapes that are distributed, hybrid & on-demand, IT Operations teams are finding it hard to keep up. Artificial Intelligence for IT Ops (AIOps) is poised to fundamentally transform the Healthcare Industry. It is powering Healthcare Providers across the globe, who are adopting it to Automate, Predict, Remediate & Prevent Incidents in their IT Infrastructure. GAVS’ Zero Incident FrameworkTM (ZIF) – an AIOps Platform, is a pure-play AI platform based on unsupervised Machine Learning and comes with the full suite of tools an IT Infrastructure team would need. Please watch this video to learn more.

READ ALSO OUR NEW UPDATES

Analyze

Have you heard of AIOps?

Artificial intelligence for IT operations (AIOps) is an umbrella term for the application of Big Data Analytics, Machine Learning (ML) and other Artificial Intelligence (AI) technologies to automate the identification and resolution of common Information Technology (IT) problems. The systems, services and applications in a large enterprise produce immense volumes of log and performance data. AIOps uses this data to monitor the assets and gain visibility into the working behaviour and dependencies between these assets.

According to a Gartner study, the adoption of AIOps by large enterprises would rise to 30% by 2023.

ZIF – The ideal AIOps platform of choice

Zero Incident FrameworkTM (ZIF) is an AIOps based TechOps platform that enables proactive detection and remediation of incidents helping organizations drive towards a Zero Incident Enterprise™

ZIF comprises of 5 modules, as outlined below.

At the heart of ZIF, lies its Analyze and Predict (A&P) modules which are powered by Artificial Intelligence and Machine Learning techniques. From the business perspective, the primary goal of A&P would be 100% availability of applications and business processes.

Come, let us understand more about the Analyze function of ZIF.

With Analyzehaving a Big Data platform under its hood, volumes of raw monitoring data, both structured and unstructured, can be ingested and grouped to build linkages and identify failure patterns.

Data Ingestion and Correlation of Diverse Data

The module processes a wide range of data from varied data sources to break siloes while providing insights, exposing anomalies and highlighting risks across the IT landscape. It increases productivity and efficiency through actionable insights.

  • 100+ connectors for leading tools, environments and devices
  • Correlation and aggregation methods uncover patterns and relationships in the data

Noise Nullification

Eliminates duplicate incidents, false positives and any alerts that are insignificant. This also helps reduce the Mean-Time-To-Resolution and event-to-incident ratio.

  • Deep learning algorithms isolate events that have the potential to become incidents along with their potential criticality
  • Correlation and Aggregation methods group alerts and incidents that are related and needs a common remediation
  • Reinforcement learning techniques are applied to find and eliminate false positives and duplicates

Event Correlation

Data from various sources are ingested real-time into ZIF either by push or pull mechanism. As the data is ingested, labelling algorithms are run to label the data based on identifiers. The labelled data is passed through the correlation engine where unsupervised algorithms are run to mine the patterns. Sub-sequence mining algorithms help in identifying unique patterns from the data.

Unique patterns identified are clustered using clustering algorithms to form cases. Every case that is generated is marked by a unique case id. As part of the clustering process, seasonality aspects are checked from historical transactions to derive higher accuracy of correlation.

Correlation is done based on pattern recognition, helping to eliminate the need for relational CMDB from the enterprise. The accuracy of the correlation increases as patterns reoccur. Algorithms also can unlearn patterns based on the feedback that can be provided by actions taken on correlation. As these are unsupervised algorithms, the patterns are learnt with zero human intervention.

Accelerated Root Cause Analysis (RCA)

Analyze module helps in identifying the root causes of incidents even when they occur in different silos. Combination of correlation algorithms with unsupervised deep learning techniques aid in accurately nailing down the root causes of incidents/problems. Learnings from historical incidents are also applied to find root causes in real-time. The platform retraces the user journeys step-by-step to identify the exact point where an error occurs.

Customer Success Story – How ZIF’s A&P transformed IT Operations of a Manufacturing Giant

  • Seamless end-to-end monitoring – OS, DB, Applications, Networks
  • Helped achieve more than 50% noise reduction in 6 months
  • Reduced P1 incidents by ~30% through dynamic and deep monitoring
  • Achieved declining trend of MTTR and an increasing trend of Availability
  • Resulted in optimizingcommand centre/operations head count by ~50%
  • Resulted in ~80% reduction in operations TCO

For more detailed information on GAVS’ Analyze, or to request a demo please visit zif.ai/products/analyze

References: www.gartner.com/smarterwithgartner/how-to-get-started-with-aiops

ABOUT THE AUTHOR

Vasudevan Gopalan


Vasu heads Engineering function for A&P. He is a Digital Transformation leader with ~20 years of IT industry experience spanning across Product Engineering, Portfolio Delivery, Large Program Management etc. Vasu has designed and delivered Open Systems, Core Banking, Web / Mobile Applications etc.

Outside of his professional role, Vasu enjoys playing badminton and focusses on fitness routines.

READ ALSO OUR NEW UPDATES

Proactive Monitoring

Is your IT environment proactively monitored?

It is important to have the right monitoring solution for an enterprise’s IT environment. More than that, it is imperative to leverage the right solution and deploy it for the appropriate requirements. In this context, the IT environment includes but is not limited to Applications, Servers, Services, End-User Devices, Network devices, APIs, Databases, etc. Towards that, let us understand the need and importance of Proactive Monitoring. This has a direct role in achieving the journey towards Zero Incident EnterpriseTM. Let us unravel the difference between reactive and proactive monitoring.

Reactive Monitoring – When a problem occurs in an IT environment, it gets notified through monitoring and the concerned team acts on it to resolve the issue.The problem could be as simple as slowness/poor performance, or as extreme as the unavailability of services like web site going down or server crashing leading to loss of business and revenue.  

Proactive Monitoring – There are two levels of proactive monitoring, 

  • Symptom-based proactive monitoring is all about identifying the signals and symptoms of an issue in advance and taking appropriate and immediate action to nip the root-cause in the bud.
  • Synthetic-based proactive monitoring is achieved through Synthetic Transactions. Performance bottlenecks or failures are identified much in advance; even before the actual user or the dependent layer encounters the situation

Symptom-based proactive monitoring is a USP of the ZIF Monitor module. For example, take the case of CPU related monitoring. It is common to monitor the CPU utilization and act based on that. But Monitor doesn’t just focus on CPU utilization, there are a lot of underlying factors which causes the CPU utilization to go high. To name a few,

  • Processor queue length 
  • Processor context switches
  • Processes that are contributing to high CPU utilization

It is important to arrest these brewing factors at the right time, i.e., in the case of Processor Queue length, continuous or sustained queue of greater than 2 threads is generally an indication of congestion at processor level.Of course, in a multiple processor environment, we need to divide the queue length by the number of processors that are servicing the workload. As a remedy, the following can be done

1) the number of threads can be limited at the application level

2) unwanted processes can be killed to help close the queued items

3) upgrading the processor will help in keeping the queue length under control, which eventually will control the CPU utilization.

Above is a sample demonstration of finding the symptom and signal and arrest them proactively. ZIF’s Monitor not only monitors these symptoms, but also suggests the remedy through the recommendation from SMEs.

Synthetic monitoring (SM) is done by simulating the transactions through the tool without depending on the end-user to do the transactions. The advantages of synthetic monitoring are, 

  • it uses automated transaction simulation technology
  • it helps to monitor the environment round-the-clock 
  • it helps to validate from across different geographic locations 
  • it provides options to choose the number of flows/transactions to be verified
  • it is proactive – identifies performance bottlenecks or failures much in advance even before the actual user or the dependent layer encounters the situation

How does Synthetic Monitoring(SM) work?

It works through 3 simple steps,

1) Record key transactions – Any number of transactions can be recorded, if required, all the functional flows can be recorded. An example of transaction in an e-commerce website could be, as simple as login and view the product catalogue, or,as elaborate as login, view product catalogue, move item to cart, check-out, make-payment and logout. For simulation purpose, dummy credit cards are used during payment gateway transactions.

2) Schedule the transactions – Whether it should run every 5 minutes or x hours or minutes.

3) Choose the location from which thesetransactions need to be triggered – The SM is available as on-premise or cloud options. Cloud SM provides the options to choose the SM engines available across globe (refer to the green dots in the figure below).

This is applicable mainly for web based applications, but can also be used for the underlying APIs as well.

SM solution has engines which run the recorded transactions against the target application. Once scheduled, the SM engine hosted either on-premise or remotely (refer to the green dots in the figure shown as sample representation), will run the recorded transactions at a predefined interval. The SM dashboard provides insights as detailed under the benefits section below.

Benefits of SM

As the SM does the synthetic transactions, it provides various insights like,

  • The latency in the transactions, i.e. the speed at which the transaction is happening. This also gives a trend analysis of how the application is performing over a period.
  • If there are any failures during the transaction, SM provides the details of the failure including the stack trace of the exception. This makes fixing the failure simpler, by avoiding the time spent in debugging.
  • In case of failure, SM provides insights into the parameter details that triggered the failure.
  • Unlike real user monitoring, there is the flexibility to test all flows or at least all critical flows without waiting for the user to trigger or experience it.
  • This not only unearths the problem at the application tier but also provides deeper insights while combining it with Application, Server, Database, Network Monitoring which are part of the ZIF Monitor suite.
  • Applications working fine under one geography may fail in a different geography due to various factors like network, connectivity, etc. SM will exactly pinpoint the availability and performance across geographies.

For more detailed information on GAVS’Monitor, or to request a demo please visit, https://zif.ai/products/monitor/

About the Author

Suresh Kumar Ramasamy


Suresh heads the Monitor component of ZIF at GAVS. He has 20 years of experience in Native Applications, Web, Cloud and Hybrid platforms from Engineering to Product Management. He has designed & hosted the monitoring solutions. He has been instrumental in conglomerating components to structure the Environment Performance Management suite of ZIF Monitor.

Suresh enjoys playing badminton with his children. He is passionate about gardening, especially medicinal plants.

READ ALSO OUR NEW UPDATES

Monitoring Microservices and Containers

Monitoring applications and infrastructure is a critical part of IT Operations. Among other things, monitoring provides alerts on failures, alerts on deteriorations that could potentially lead to failures, and performance data that can be analysed to gain insights. AI-led IT Ops Platforms like ZIF use such data from their monitoring component to deliver pattern recognition-based predictions and proactive remediation, leading to improved availability, system performance and hence better user experience.

The shift away from monolith applications towards microservices has posed a formidable challenge for monitoring tools. Let’s first take a quick look at what microservices are, to understand better the complications in monitoring them.

Monoliths vs Microservices

A single application(monolith) is split into a number of modular services called microservices, each of which typically caters to one capability of the application. These microservices are loosely coupled, can communicate with each other and can be deployed independently.

Quite likely the trigger for this architecture was the need for agility. Since microservices are stand-alone modules, they can follow their own build/deploy cycles enabling rapid scaling and deployments. They usually have a small codebase which aids easy maintainability and quick recovery from issues. The modularity of these microservices gives complete autonomy over the design, implementation and technology stack used to build them.

Microservices run inside containers that provide their execution environment. Although microservices could also be run in virtual machines(VMs), containers are preferred since they are comparatively lightweight as they share the host’s operating system, unlike VMs. Docker and CoreOS Rkt are a couple of commonly used container solutions while Kubernetes, Docker Swarm, and Apache Mesos are popular container orchestration platforms. The image below depicts microservices for hiring, performance appraisal, rewards & recognition, payroll, analytics and the like linked together to deliver the HR function.

Challenges in Monitoring Microservices and Containers

Since all good things come at a cost, you are probably wondering what it is here… well, the flip side to this evolutionary architecture is increased complexity! These are some contributing factors:

Exponential increase in the number of objects: With each application replaced by multiple microservices, 360-degree visibility and observability into all the services, their interdependencies, their containers/VMs, communication channels, workflows and the like can become very elusive. When one service goes down, the environment gets flooded with notifications not just from the service that is down, but from all services dependent on it as well. Sifting through this cascade of alerts, eliminating noise and zeroing in on the crux of the problem becomes a nightmare.

Shared Responsibility: Since processes are fragmented and the responsibility for their execution, like for instance a customer ordering a product online, is shared amongst the services, basic assumptions of traditional monitoring methods are challenged. The lack of a simple linear path, the need to collate data from different services for each process, inability to map a client request to a single transaction because of the number of services involved make performance tracking that much more difficult.

Design Differences: Due to the design/implementation autonomy that microservices enjoy, they could come with huge design differences, and implemented using different technology stacks. They might be using open source or third-party software that makes it difficult to instrument their code, which in turn affects their monitoring.

Elasticity and Transience: Elastic landscapes where infrastructure scales or collapses based on demand, instances appear & disappear dynamically, have changed the game for monitoring tools. They need to be updated to handle elastic environments, be container-aware and stay in-step with the provisioning layer. A couple of interesting aspects to handle are: recognizing the difference between an instance that is down versus an instance that is no longer available; data of instances that are no longer alive continue to have value for analysis of operational efficiency or past performance.

Mobility: This is another dimension of dynamic infra where objects don’t necessarily stay in the same place, they might be moved between data centers or clouds for better load balancing, maintenance needs or outages. The monitoring layer needs to arm itself with new strategies to handle moving targets.

Resource Abstraction: Microservices deployed in containers do not have a direct relationship with their host or the underlying operating system. This abstraction is what helps seamless migration between hosts but comes at the expense of complicating monitoring.

Communication over the network: The many moving parts of distributed applications rely completely on network communication. Consequently, the increase in network traffic puts a heavy strain on network resources necessitating intensive network monitoring and a focused effort to maintain network health.

What needs to be measured

This is a high-level laundry list of what needs to be done/measured while monitoring microservices and their containers.

Auto-discovery of containers and microservices:

As we’ve seen, monitoring microservices in a containerized world is a whole new ball game. In the highly distributed, dynamic infra environment where ephemeral containers scale, shrink and move between nodes on demand, traditional monitoring methods using agents to get information will not work. The monitoring system needs to automatically discover and track the creation/destruction of containers and explore services running in them.

Microservices:

  • Availability and performance of individual services
  • Host and infrastructure metrics
  • Microservice metrics
  • APIs and API transactions
    • Ensure API transactions are available and stable
    • Isolate problematic transactions and endpoints
  • Dependency mapping and correlation
  • Features relating to traditional APM

Containers:

  • Detailed information relating to each container
    • Health of clusters, master and slave nodes
  • Number of clusters
  • Nodes per cluster
  • Containers per cluster
    • Performance of core Docker engine
    • Performance of container instances

Things to consider while adapting to the new IT landscape

Granularity and Aggregation: With the increase in the number of objects in the system, it is important to first understand the performance target of what’s being measured – for instance, if a service targets 99% uptime(yearly), polling it every minute would be an overkill. Based on this, data granularity needs to be set prudently for each aspect measured, and can be aggregated where appropriate. This is to prevent data inundation that could overwhelm the monitoring module and drive up costs associated with data collection, storage, and management.    

Monitor Containers: The USP of containers is the abstraction they provide to microservices, encapsulating and shielding them from the details of the host or operating system. While this makes microservices portable, it makes them hard to reach for monitoring. Two recommended solutions for this are to instrument the microservice code to generate stats and/or traces for all actions (can be used for distributed tracing) and secondly to get all container activity information through host operating system instrumentation.    

Track Services through the Container Orchestration Platform: While we could obtain container-level data from the host kernel, it wouldn’t give us holistic information about the service since there could be several containers that constitute a service. Container-native monitoring solutions could use metadata from the container orchestration platform by drilling into appropriate layers of the platform to obtain service-level metrics. 

Adapt to dynamic IT landscapes: As mentioned earlier, today’s IT landscape is dynamically provisioned, elastic and characterized by mobile and transient objects. Monitoring systems themselves need to be elastic and deployable across multiple locations to cater to distributed systems and leverage native monitoring solutions for private clouds.

API Monitoring: Monitoring APIs can provide a wealth of information in the black box world of containers. Tracking API calls from the different entities – microservices, container solution, container orchestration platform, provisioning system, host kernel can help extract meaningful information and make sense of the fickle environment.

Watch this space for more on Monitoring and other IT Ops topics. You can find our blog on Monitoring for Success here, which gives an overview of the Monitorcomponent of GAVS’ AIOps Platform, Zero Incident FrameworkTM (ZIF). You can Request a Demo or Watch how ZIF works here.

About the Author:

Sivaprakash Krishnan


Bio – Siva is a long timer at Gavs and has been with the company for close to 15 years. He started his career as a developer and is now an architect with a strong technology background in Java, Big Data, DevOps, Cloud Computing, Containers and Micro Services. He has successfully designed & created a stable Monitoring Platform for ZIF, and designed & driven cloud assessment and migration, enterprise BRMS and IoT based solutions for many of our customers. He is currently focused on building ZIF 4.0, a new gen business-oriented TechOps platform.

Padmapriya Sridhar


Bio – Priya is part of the Marketing team at GAVS. She is passionate about Technology, Indian Classical Arts, Travel and Yoga. She aspires to become a Yoga Instructor some day!