Empowering Digital Healthcare Transformation with ZIFTM

The Modern-Day Healthcare

The healthcare industry is one of the biggest revenue generation sectors for the economy. In 2020, the healthcare industry generated close to $2.5 trillion dollars in the US. This has been made possible due to multiple revenue generation streams that encompass the development and commercialization of products and services that aid in maintaining and restoring health.

The modern healthcare industry has three essential sectors – services, products, and finance, which in turn can be further branched to various interdisciplinary groups of professionals that meet the health needs of their respective customers.

For any industry to scale and cover more customers, being digital is the best solution. Stepping into the digital space brings various tools and functionalities that can improve the effectivity and efficiency of the products and services offered in the Healthcare Industry.

The key component of any Digital Healthcare Transformation is it’s Patient-Focused Healthcare Approach. The transformation must aid healthcare providers in better streamlining the operations, understanding what the patients need and in turn build loyalty, trust and a stellar user experience.

Healthcare Transformation Trends

Innovation is the foundation for all Transformation initiatives. The vision of rationalizing work, optimizing systems, improving delivery results, eliminating human error, reducing costs, and improving the overall customer experiences are the levers that churn the wheel. With the advent of VR, wearable medical devices, telemedicine, and 5G using AI-enabled systems have significantly changed the traditional way that consumers use healthcare products and services.

ai automated root cause analysis solution

The industry has shifted its focus in making intelligent and scalable systems that can process complex functionalities as well as deliver customer experience at its finest.  With the integration of AI and omnichannel platforms, organizations can better understand their customers, address service and product gaps to better capitalize the market to achieve higher growth. Hence, transformation is the key to pushing forward in unprecedented and unpredictable times in order to achieve organizational vision and goals.

Sacrosanct System Reliability

The healthcare industry is a very sensitive sector that requires careful attention to its customers. A mishap in the service can result in a life-and-death situation. Healthcare organizations aim to learn lessons from failures and incidents to make sure that they never happen again.

Maintaining and ensuring safe, efficient, and effective systems is the foundation for creating reliable systems in the Healthcare industry. Hence, innovation and transformation disrupt the existing process ecosystems and evolve them to bring in more value.

The challenge that organizations face is in their implementation and value realization with respect to cost savings, productivity enhancements, and overall revenue. The prime aspect of system reliability signifies the level of performance over time. When we consider healthcare, looking at defects alone does not differentiate reliability from the functional quality of the system. Reliability should be measured to its failure-free operation over time. Systems should be designed and implemented to focus on failure-free operation.

Measuring system operations over time can be depicted as a bathtub curve. While measuring performance, initial failure tends to arise from defects and situational factors. Eventually, the efficiency improves, and the curve flattens out to depict useful life until the wear-out phase starts from design and other situational factors.

ai data analytics monitoring tools

While understanding the bathtub curve of system operations over time, we can infer that system design majorly contributes to the initial defects and system longevity. Hence, organizations must strive to build systems that can last a tenure from which the invested capital can be gained back, and the additional returns can be used for its future modernization goals.

Towards the end of the day, system reliability revolves around the following factors:

  1. Process failure prevention
  2. Identification and Mitigation of failure
  3. Process redesign for critical failure avoidance

Reliability and Stability should seriously be considered whenever healthcare systems are being implemented. This is because the industry is facing quality-related challenges. Healthcare organizations are not delivering safe, reliable, and proof-based care. Thus, it is important for professionals to be empowered with tools and modern-day functionalities that would reduce the error and risk involved in their service delivery. These modern-day tools’ reliability must be sacrosanct to ensure that stellar customer experience and patient care are given.

Organizations purely focused on cost savings as a standalone goal can lead to unpredictable outcomes. It is imperative that an organization realize robust and reliability-centered processes that define clears roles and accountability to its employees, in order to have a sustainable form of operation.

When all these factors come together, the value realizations for the organization as well as its customer base are immense. These systems can contribute towards better ROI, improved profitability, enhanced competitive advantage, and an evolved customer brand perception.

These enhanced systems improve the customer loyalty and the overall brand value.

ai devops platform management services

Device Monitoring with ZIFTM

Ever since the pandemic hit, healthcare organizations have concentrated towards remote patient health monitoring, telemedicine, and operations to expedite vaccine deliveries. These healthcare organizations have invested heavily in systems that connect all the data required for day-to-day operations into one place for consolidated analysis and decision making.

For the effective functioning of these consolidated systems, each of the devices that are connected to the main system needs to be functioning to its optimal capacity. If there is a deviation in device performance and the root cause is not identified promptly, this can have adverse effects on the service delivery as well as the patient’s health.

These incidents can be addressed with ZIFTM’s OEM Device monitoring capabilities. ZIFTM can be used to provide a visual dashboard of all operational devices and monitor their health to set thresholds for maintenance, incident detection, and problem resolutions. The integration can also create a consolidated view for all logs and vital data that can be later used for processing to give predictive information for actionable insights. The end goal that ZIFTM aims to achieve here is to pivot organizations towards a proactive approach to servicing and support for the devices that are operational. This connectivity and monitoring of devices across their portfolio can substantially bring in measurable changes in its cost savings, service efficiency, and effectivity.

Prediction & Reliability Enhancement

With healthcare systems and digital services expanding across different organizations, predicting their reliability, efficiency and effectivity are important. When we look at reliability prediction, the core function is to evaluate systems and predict or estimate their failure rate.

In the current scenario, organizations are performing reliability and prediction analysis manually. Each of the resources analyzes the system to its component level and monitors its performance. This process has a high susceptibility to manual errors and data discrepancies. With ZIFTM, the integrated systems can be analyzed and modeled based on various characteristics that contribute to its systemic operation and failure. ZIFTM analyzes the system down to its component level to model and estimates each of its parameters that contribute to the system’s reliability.

The ZIFTM Empowerment

Players in the Healthcare Industry must understand that Digital Transformation is the way forward to keep up with the emerging trends and tend to its growing customer needs. The challenge comes in selecting the right technology that is worth investing and reaping its benefits within the expected time period.

As healthcare service empowerment leaders in the industry, GAVS is committed to align with our healthcare customers’ goals and bring in customized solutions that help them attain their vision. When it comes to supporting reliable systems and making them self-resilient, the Zero Incident FrameworkTM can bring in measurable value realizations upon its implementation.

ZIFTM is an AIOps platform that is crafted for predictive and autonomous IT operations that support day-to-day business processes. Our flagship AIOps platform empowers businesses to Discover, Monitor, Analyze, Predict and Remediate threats and incidents faced during operations. ZIFTM is one unified platform that can transform IT operations that ensure service assurance and reliability.   

ZIFTM transforms how organizations view and handle incidents. IT war rooms become more proactive when it comes to fire fighting. Upon implementation, customers can get end-to-end visibility of enterprise applications and infrastructure dependencies to better understand areas needing optimization and monitoring.   The Low code/No code implementation with various avenues for integration, provides our customers a unified and real-time view of on-premise and cloud layers of their application systems. This enables and empowers them to track performance, reduce incidents and improve the overall MTTR for service request and application incidents.

Zero is Truly, The New Normal.

ai for application monitoring

Experience and Explore the power of AI led Automation that can empower and ensure System Reliability and Resilience.

Schedule a Demo today and let us show you how ZIFTM can transform your business ecosystem.

www.zif.ai

About the Author –

Ashish Joseph

Ashish Joseph is a Lead Consultant at GAVS working for a healthcare client in the Product Management space. His areas of expertise lie in branding and outbound product management.

He runs two independent series called BizPective & The Inside World, focusing on breaking down contemporary business trends and Growth strategies for independent artists on his website www.ashishjoseph.biz

Outside work, he is very passionate about basketball, music, and food.

#EmpathyChallenge – 3 Simple Ways to Practice Empathy Consciously

A pertinent question for the post COVID workforce is, can empathy be learnt? Should it be practiced only by the leaders, or by everyone – can it be seamlessly woven into the fabric of the organization? We are seeing that dynamics at play for remote teams is little unpredictable, making each day uniquely challenging. Empathy is manifested through mindful behaviours, where one’s action is recognized as genuine, personal, and specific to the situation. A few people can be empathetic all the time, a few, practice it consciously, and a few are unaware of it.

Empathy is a natural human response that can be practiced by everyone at work for nurturing an environment of trust. We often confuse empathy for sympathy – while sympathy is feeling sorry for one’s situation, empathy is understanding one’s feelings and needs, and putting the effort to offer authentic support. It requires a shift in perspective, and building trust, respect, and compassion at a deeper level. As Satya Nadella, CEO, Microsoft says, “Empathy is a muscle that needs to be exercised.”

Here are three ways to consciously practice empathy at work –

  • Going beyond yourself

It takes a lot to forget how we feel that day, or what is priority for us. However, to be empathetic, one needs to be less judgemental. When one is consciously practicing empathy, one needs to be patient with yourself, your thoughts, and not compare yourself with the person you are empathizing with. If we get absorbed by our own needs, it gets difficult to be generous and compassionate. We need to remember empathy leads to influence and respect, and for that we should not get blind sighted by our perceptions.

  • Being a mindful and intentional listener

While practicing empathy, one has refrain from criticism, and be mindful of not talking about one’s problems. We may get sympathetic and give unsolicited advice. Sometimes it only takes to be an intentional listener, by avoiding distractions, and having a very positive body language, and demeanour. This will enable us to ask right questions and collaborate towards a solution.

  • Investing in the person

Very often, we support our colleagues and co-workers by responding to their email requests. However, by building positive workplace relationships, and knowing the person beyond his/her email id, makes it much easier to foster empathy. Compassion needs to be not just in words, but in action too, and that can happen only by knowing the person. Taking interest in a co-worker or a team member, beyond a professional capability, does not come out of thin air. It takes conscious continuous efforts to get to know the person, showing care and concern, which will help us to relate to the myriad challenges they go through – be it chronic illness, child care that correlates to his/her ability to engaged at work. It will enable us to personalize the experience, and see the person’s point of view, holistically.

When we take that genuine interest in how we make others feel and experience, we start mindfully practicing empathy. Empathy fosters respect. Empathy helps resolves conflicts better, empathy builds stronger teams, empathy inspires one another to work towards collective goals, and empathy breaks authority. Does it take that extra bit of time to consciously practice it? Yes, but it is all worth it.

References

Padma Ravichandran

About the Author –

Padma is intrigued by Organization Culture and Behavior at workplace that impact employee experience. She is also passionate about driving meaningful initiatives for enabling women to Lean In, along with her fellow Sheroes. She enjoys reading books, journaling, yoga and learning more about life through the eyes of her 8-year-old son.

Balancing Management Styles for a Remote Workforce

Operational Paradigm Shift

The pandemic has indeed impelled organizations to rethink the way they approach traditional business operations. The market realigned businesses to adapt to the changing environment and optimize their costs. For the past couple of months, nearly every organization implemented work for home as a mandate. This shift in operations had both highs and lows in terms of productivity. Almost a year into the pandemic, the impacts are yet to be fully understood. The productivity realized from the remote workers, month on month, shaped the policies and led to investments in different tools that aided collaboration between teams. 

Impact on Delivery Centers

Technology companies have been leading the charge towards remote working as many have adopted permanent work from home options for their employees. While identifying cost avenues for optimization, office space allocation and commuting costs are places where redundant operational cash flow can be invested to other areas for scaling.

The availability and speed of internet connections across geographies have aided the transformation of office spaces for better utilization of the budget. Considering the current economy, office spaces are becoming expensive and inefficient. The Annual Survey by JLL Enterprises in 2020 reveals that organizations spend close to $10,000 on global office real estate cost per employee per year on an average. As offices have adopted social distancing policies, the need for more space per employee would result in even higher costs during these pandemic operations. To optimize their budgets, companies have reduced their allocation spaces and introduced regional contractual sub-offices to reduce the commute expenses of their employees in the big cities. 

With this, the notion of a 9-5 job is slowly being depleted and people have been paid based on their function rather than the time they spend at work. The flexibility of working hours while linking their performance to their delivery has seen momentum in terms of productivity per resource. An interesting fact that arose out of this pandemic economy is that the number of remote workers in a country is proportional to the country’s GDP. A work from home survey undertaken by The Economist in 2020 finds that only 11% of work from home jobs can be done in Cambodia, 37% in America, and 45% in Switzerland. 

The fact of the matter is that a privileged minority has been enjoying work from home for the past couple of months. While a vast majority of the semi-urban and rural population don’t have the infrastructure to support their functional roles. For better optimization and resource utilization, India would need to invest heavily in these resources to catch up on the deficit GDP from the past couple of quarters.

Long-term work from home options challenges the foundational fabric of our industrial operations. It can alter the shape and purpose of cities, change workplace gender distribution and equality. Above all, it can change how we perceive time, especially while estimating delivery. 

Overall Pulse Analysis

Many employees prefer to work from home as they can devote extra time to their family. While this option has been found to have a detrimental impact on organizational culture, creativity, and networking. Making decisions based on skewed information would have an adverse effect on the culture, productivity, and attrition. 

To gather sufficient input for decisions, PWC conducted a remote work survey in 2020 called “When everyone can work from home, what’s the office for“. Here are some insights from the report

ai automated root cause analysis solution

ai data analytics monitoring tools

Many businesses have aligned themselves to accommodate both on-premise and remote working model. Organizations need to figure out how to better collaborate and network with employees in ways to elevate the organization culture. 

As offices are slowly transitioning to a hybrid model, organizations have decentralized how they operate. They have shifted from working in a common centralized office to contractual office spaces as per employee role and function, to better allocate their operational budget. The survey found that 72% of the workers would like to work remotely at least 2 days a week. This showcases the need for a hybrid workspace in the long run. 

Maintaining & Sustaining Productivity

During the transition, keeping a check on the efficiency of remote workers was prime. The absence of these checks would jeopardize the delivery, resulting in a severe impact on customer satisfaction and retention.

ai devops platform management services

This number however, could be far less if the scale of the survey was higher. This in turn signifies that productivity is not uniform and requires course corrective action to maintain the delivery. An initial approach from an employee’s standpoint would result in higher results. The measures to help remote workers be more productive were found to be as follows.

ai for application monitoring

Many employees point out that greater flexibility of working hours and better equipment would help increase work productivity.

Most of the productivity hindrances can be solved by effective employee management. How a particular manager supervises their team members has a direct correlation towards their productivity and satisfaction to the project delivery. 

Theory X & Theory Y

Theory X and Theory Y were introduced by Douglas McGregor in his book, “The Human Side of Enterprise”. He talks about two styles of management in his research – Authoritarian (Theory X) and Participative (Theory Y). The theory heavily believes that Employee Beliefs directly influence their behavior in the organization. The approach that is taken by the organization will have a significant impact on the ability to manage team members. 

For theory X, McGregor speculates that “Without active intervention by management, people would be passive, even resistant to organizational needs. They must therefore be persuaded, rewarded, punished, controlled and their activities must be directed”

ai in operations management service

Work under this style of management tends to be repetitive and motivation is done based on a carrot and stick approach. Performance Appraisals and remuneration are directly correlated to tangible results and are often used to control staff and keep tabs on them. Organizations with several tiers of managers and supervisors tend to use this style. Here authority is rarely delegated, and control remains firmly centralized. 

Even though this style of management may seem outdated, big organizations find it unavoidable to adopt due to the sheer number of employees on the payroll and tight delivery deadlines.

When it comes to Theory Y, McGregor firmly believes that objectives should be arranged so that individuals can achieve their own goals and happily accomplish the organization’s goal at the same time.

application performance management solutions

Organizations that follow this style of management would have an optimistic and positive approach to people and problems. Here the team management is decentralized and participative.

Working under such organizational styles bestow greater responsibilities on employees and managers encourage them to develop skills and suggest areas of improvement. Appraisals in Theory Y organizations encourage open communication rather than to exercise control. This style of management has been popular these days as it results in employees wanting to have a meaningful career and looking forward to things beyond money.

Balancing X over Y

Even though McGregor suggests that Theory Y is better than Theory X. There are instances where managers would need to balance the styles depending upon how the team function even post the implementation of certain management strategies. This is very important from a remote working context as the time for intervention would be too late before it impacts the delivery. Even though Theory Y comprises creativity and discussion in its DNA, it has its limitations in terms of consistency and uniformity. An environment with varying rules and practices could be detrimental to the quality and operational standards of an organization. Hence maintaining a balance is important.

When we look at a typical cycle of Theory X, we can find that the foundational beliefs result in controlling practices, appearing in employee resistance which in turn delivers poor results. The results again cause the entire cycle to repeat, making the work monotonous and pointless. 

applications of predictive analytics in business

Upon the identification of resources that require course correction and supervision, understanding the root cause and subsequently adjusting your management style to solve the problem would be more beneficial in the long run. Theory X must only be used in dire circumstances requiring a course correction. The balance where we need to maintain is on how far we can establish control to not result in resistance which in turn wouldn’t impact the end goal.

predictive analytics business forecasting

Theory X and Theory Y can be directly correlated to Maslow’s hierarchy of Needs. The reason why Theory Y is superior to Theory X is that it focuses on the higher needs of the employee than their foundational needs. The theory Y managers gravitate towards making a connection with their team members on a personal level by creating a healthier atmosphere in the workplace. Theory Y brings in a pseudo-democratic environment, where employees can design, construct and publish their work in accordance with their personal and organizational goals.

When it comes to Theory X and Theory Y, striking a balance will not be perfect. The American Psychologist Bruce J Avolio, in his paper titled “Promoting more integrative strategies for leadership theory-building,” speculates, “Managers who choose the Theory Y approach have a hands-off style of management. An organization with this style of management encourages participation and values an individual’s thoughts and goals. However, because there is no optimal way for a manager to choose between adopting either Theory X or Theory Y, it is likely that a manager will need to adopt both approaches depending on the evolving circumstances and levels of internal and external locus of control throughout the workplace”.

The New Normal 3.0

As circumstances keep changing by the day, organizations need to adapt to the rate at which the market is changing to envision new working models that take human interactions into account as well. The crises of 2020 made organizations build up their workforce capabilities that are critical for growth. Organizations must relook at their workforce by reskilling them in different areas of digital expertise as well as emotional, cognitive, and adaptive skills to push forward in our changing world.

Ashish Joseph

About the Author –

Ashish Joseph is a Lead Consultant at GAVS working for a healthcare client in the Product Management space. His areas of expertise lie in branding and outbound product management.

He runs two independent series called BizPective & The Inside World, focusing on breaking down contemporary business trends and Growth strategies for independent artists on his website www.ashishjoseph.biz

Outside work, he is very passionate about basketball, music, and food.

AIOps Myth Busters

The explosion of technology & data is impacting every aspect of business. While modern technologies have enabled transformational digitalization of enterprises, they have also infused tremendous complexities in infrastructure & applications. We have reached a point where effective management of IT assets mandates supplementing human capabilities with Artificial Intelligence & Machine Learning (AI/ML).      

AIOps is the application of Artificial Intelligence (AI) to IT operations (Ops). AIOps leverages AI/ML technologies to optimize, automate, and supercharge all aspects of IT Operations. Gartner predicts that the use of AIOps and digital experience monitoring tools for monitoring applications and infrastructure would increase by 30% in 2023. In this blog, we hope to debunk some common misconceptions about AIOps.

MYTH 1: AIOps mainly involves alert correlation and event management

AIOps can deliver enormous value to enterprises that harness the wide range of use cases it comes with. While alert correlation & management are key, AIOps can add a lot of value in areas like monitoring, user experience enhancement, and automation.  

AIOps monitoring cuts across infrastructure layers & silos in real-time, focusing on metrics that impact business outcomes and user experience. It sifts through monitoring data clutter to intelligently eliminate noise, uncover patterns, and detect anomalies. Monitoring the right UX metrics eliminates blind spots and provides actionable insights to improve user experience. AIOps can go beyond traditional monitoring to complete observability, by observing patterns in the IT environment, and externalizing the internal state of systems/services/applications. AIOps can also automate remediation of issues through automated workflows & standard operating procedures.

MYTH 2: AIOps increases human effort

Forbes says data scientists spend around 80% of their time preparing and managing data for analysis. This leaves them with little time for productive work! With data pouring in from monitoring tools, quite often ITOps teams find themselves facing alert fatigue and even missing critical alerts.

AIOps can effectively process the deluge of monitoring data by AI-led multi-layered correlation across silos to nullify noise and eliminate duplicates & false positives. The heavy lifting and exhausting work of ingesting, analyzing, weeding out noise, correlating meaningful alerts, finding the probable root causes, and fixing them, can all be accomplished by AIOps. In short, AIOps augments human capabilities and frees up their bandwidth for more strategic work.

MYTH 3: It is hard to ‘sell’ AIOps to businesses

While most enterprises acknowledge the immense potential for AI in ITOps, there are some concerns that are holding back widespread adoption. The trust factor with AI systems, the lack of understanding of the inner workings of AI/ML algorithms, prohibitive costs, and complexities of implementation are some contributing factors. While AIOps can cater to the full spectrum of ITOps needs, enterprises can start small & focus on one aspect at a time like say alert correlation or application performance monitoring, and then move forward one step at a time to leverage the power of AI for more use cases. Finding the right balance between adoption and disruption can lead to a successful transition.  

MYTH 4: AIOps doesn’t work in complex environments!

With Machine Learning and Big Data technologies at its core, AIOps is built to thrive in complex environments. The USP of AIOps is its ability to effortlessly sift through & garner insights from huge volumes of data, and perform complex, repetitive tasks without fatigue. AIOps systems constantly learn & adapt from analysis of data & patterns in complex environments. Through this self-learning, they can discover the components of the IT ecosystem, and the complex network of underlying physical & logical relationships between them – laying the foundation for effective ITOps.   

MYTH 5: AIOps is only useful for implementing changes across IT teams

An AIOps implementation has an impact across all business processes, and not just on IT infrastructure or software delivery. Isolated processes can be transformed into synchronized organizational procedures. The ability to work with colossal amounts of data; perform highly repetitive tasks to perfection; collate past & current data to provide rich inferences; learn from patterns to predict future events; prescribe remedies based on learnings; automate & self-heal; are all intrinsic features that can be leveraged across the organization. When businesses acknowledge these capabilities of AIOps and intelligently identify the right target areas within their organizations, it will give a tremendous boost to quality of business offerings, while drastically reducing costs.

MYTH 6: AIOps platforms offer only warnings and no insights

With its ability to analyze and contextualize large volumes of data, AIOps can help in extracting relevant insights and making data-driven decisions. With continuous analysis of data, events & patterns in the IT environment – both current & historic – AIOps acquires in-depth knowledge about the functioning of the various components of the IT ecosystem. Leveraging this information, it detects anomalies, predicts potential issues, forecasts spikes and lulls in resource utilization, and even prescribes appropriate remedies. All of this insight gives the IT team lead time to fix issues before they strike and enables resource optimization. Also, these insights gain increasing precision with time, as AI models mature with training on more & more data.

MYTH 7: AIOps is suitable only for Operations

AIOps is a new generation of shared services that has a considerable impact on all aspects of application development and support. With AIOps integrated into the dev pipeline, development teams can code, test, release, and monitor software more efficiently. With continuous monitoring of the development process, problems can be identified early, issues fixed, and changes rolled back as appropriate. AIOps can promote better collaboration between development & ops teams, and proactive identification & resolution of defects through AI-led predictive & prescriptive insights. This way AIOps enables a shift left in the development process, smarter resource management, and significantly improves software quality & time to market.  

Augmented Analytics with SAP Analytics Cloud

Augmented Analytics

In 2017, Gartner coined the term ‘augmented analytics’ and claimed it would be the future of data analytics. They predicted it would be a dominant driver of new purchases of analytics and business intelligence as well as data science and machine learning platforms, and of embedded analytics.

Here is the why and how.

Most organizations depend on data to back up its decision-making and strategy. Organizations collect data on all accounts of processes and events; thus, analyzing and effectively managing the breadth of this data is challenging yet significant for mining it for business insights.

Traditional business intelligence tools have given way to a new generation of business intelligence tools – Augmented Analytics technology.

Augmented Analytics is an approach of data analytics that employs machine learning (ML) and natural language processing (NLP) to automate and improve data access and data quality, uncover hidden patterns and correlations in data, pinpoint what’s driving results, predict future results and suggest actions to maximize or minimize desirable or undesirable outcomes.

Augmented Analytics is designed to conduct analyses and generate business insights automatically with little to no supervision and can be used without needing the assistance of a business analyst or data scientist. However, the focus of Augmented Analytics stays in its assistive role, where technology does not replace humans but supports them.

Evolution of Analytics

Business Intelligence (BI) and Analytics has evolved, increasing the demand for decision making through data analytics. It drives to unfold from traditional mirror reporting into self-service Business Intelligence and analytics.

Despite the advances in self-service analytics with agile discovery, many businesses demand assistance to uncover insights in data.

The next generation of BI and analytics products are augmented with artificial intelligence (AI) including ML, which automates complex analytics processes, and NLP makes it easier for users without knowledge of data science or query languages to obtain insights.

best aiops solutions in usa

Augmented analytics offer starting-point suggestions and guidance to the users. It also empowers businesses to leverage more of their data to make better decisions when compared to the traditional and self-service Business Intelligence.

SAP Analytics Cloud

SAP Analytics Cloud (SAC) is an analytical solution that features all the analytics functionalities like business intelligence, augmented analytics, predictive analytics, enterprise planning, and application building in one intuitive user interface. It is empowered with ML and built-in AI that helps discover in-depth insights, simplify access to critical information and enable adequate decision-making.

aiops for devops services in usa

Augmented SAP Analytics Cloud

Augmented analytics capabilities offered by SAP Analytics Cloud empowers business intelligence to reap the benefits of AI and ML.

SAP Analytics Cloud facilitates users to interact with the system using natural language to gather automatic insights, where Predictive Scenarios offer an accessible way into Predictive Analytics using the past data to foresee the future.

Let’s look at the Analytics features, and capabilities offered by SAP Analytics Cloud

AI Devops Automation Service Tools

Search to Insight – Query search in Natural Language

The Search to Insight feature enables query search through natural language through conversational AI and NLP. No knowledge of query languages like SQL, R, or Python is required. Asking questions just like in a search engine or digital personal assistant fetches insightful answers represented by visualization or numeric values tailored based on the question type.

Search to Insight provides auto-complete suggestions to match words or phrases in questions for measures and dimensions in the data and includes auto spell-check.

AIOps Artificial Intelligence for IT Operations

Smart Insights – Instant explanations

The Smart Insights feature facilitates digging deeper into the data points. It analyzes the underlying dataset and runs various statistical algorithms to offer insights based on the current user context.

It helps to understand top contributors of specific data points without having to manually pivot or slice and dice the data. When a data point is selected, ML calculations run on information that is of the same nature as the selected data point. For example, if the selected data point is ‘Total Revenue’, the top contributors are based on ‘Total Revenue’. It analyzes the dimension in the selected data and looks for members in these dimensions that influence the selected value.

Smart Discovery – Easily reveal insights

The Smart Discovery feature identifies hidden patterns and statically relevant relationships in the data to discover how business factors influence performance. It helps to understand the business drivers behind the core KPIs.

Based on the selection of measure or dimension, smart discovery automatically generates interactive story pages as below –

Overview: It explains the data distribution, summary of trends, and the detected patterns for the target dimension or measure.

Key Influencers:  It explains the influence of the dimensions for the value of the target measures in the context of the selected model using classification and regression techniques, where the classification techniques are used to identify dimensions that segregate results into different groups of results and the regression techniques identify relationships between data points to predict future results.

Unexpected Values: It displays the details about outliers, where the actual values differ greatly from what the predictive model would expect. If an actual value diverges from the regression line it is categorized as unexpected.

Simulation: The simulation facilitates the ‘what-if’ analysis, users can change the values of the measures and dimensions to see the predicted change positively, negatively, or neutrally in the target measure.

Smart Predict – Answers the toughest questions

Smart Predict feature predicts the likelihood of different outcomes based on the historical data using techniques such as data mining, statistics, machine learning, and artificial intelligence.

Smart Predict, also referred as Predictive forecasting, considers different values, trends, cycles, and/or fluctuations in the data to make predictions that can be leveraged to aid business planning processes.

Smart Predict provides 3 different predictive scenario options for selection

Classification: It can be used to generate predictions for a binary event. For example, whether individual customers would be likely to buy the target product or not.

Time Series: It can be used to forecast values over a set period. For example, forecasting the sales of product by month or week, using historical data.

Regression: It can be used to predict values and explore key values behind them. For example, predicting the price of an imported product based on projected duties or shipping charges.

In the modern world of business Intelligence, SAP Analytics cloud’s ML technology augments the analytic process which assists from insights to actions and enables avoiding the agenda-driven and biased decision making by revealing the accurate patterns which drives the business.

References

MF Kashif

About the Author –

Kashif is a SAP Business objects consultant and a business analytics enthusiast. He believes that the “Ultimate goal is not about winning, but to reach within the depth of capabilities and to compete against yourself to be better than what you are today.”

Kappa (κ) Architecture – Streaming at Scale

We are in the era of Stream processing-as-a-service and for any data-driven organization, Stream-based computing has becoming the norm. In the last three parts https://bit.ly/2WgnILP, https://bit.ly/3a6ij2k,  https://bit.ly/3gICm88, I had explored Lambda Architecture and its variants. In this article let’s discover Streaming in the big data. ‘Real-time analytics’, ‘Real-time data’ and ‘Streaming data’ has become mandatory in any big data platform. The aspiration to extend data analysis (predictive, descriptive, or otherwise) to streaming event data has been common across every enterprise and there is a growing interest to find real-time big data architectures. Kappa (K) Architecture is one that deals with streaming. Let’s see why Real-Time Analytics matter more than ever and mandates data streaming and how streaming architecture like Kappa works. Is Kappa an alternative to lambda?

“You and I are streaming data engines.” – Jeff Hawkins

workflow automation software architecture

Questioning Lambda

Lambda architecture fits very well in many real-time use cases, mainly in re-computing algorithms. At the same time, Lambda Architecture has the inherent development and operational complexities like all the algorithms must be implemented twice, once in the cold path, the batch layer, and another execution in the hot path or the real-time layer. Apart from this dual execution path, the Lambda Architecture has the inevitable issue of debugging. Because operating two distributed multi-node services is more complex than operating one.

Given the obvious discrepancies of Lambda Architecture, Jay Kreps, CEO of Confluent, co-creator of Apache Kafka started the discussion on the need for new architecture paradigm which uses less code resource and could perform well in certain enterprise scenarios. This gave rise to Kappa (K) Architecture. The real need Kappa Architecture isn’t about efficiency at all, but rather about allowing people to develop, test, debug, and operate their systems on top of a single processing framework. In fact, Kappa is not taken as competitor to LA on the contrary it is seen as an alternative.

cognitive process automation tools for business

What is Streaming & Streaming Architecture?

Modern business requirements necessitate a paradigm shift from traditional approach of batch processing to real-time data streams. Data-centric organizations mandate the Stream first approach. Real-time data streaming or Stream first approach means at the very moment. So real-time analytics, either On-demand real-time analytics or Continuous real-time analytics, is the capability to process data right at the moment it arrives in the system. There is no possibility of batch processing of data. Not to mention, it enhances the ability to make better decision making and performing meaningful action on a timely basis. At the right place and at the right time, real-time analytics combines and analyzes data. Thus, it generates value from disparate data.

Typically, most of the streaming architectures will have the following 3 components:

  • an aggregator that gathers event streams and batch files from a variety of data sources,
  • a broker that makes data available for consumption,
  • an analytics engine that analyzes the data, correlates values and blends streams together.

Kappa (K) Architecture for Big Data era

Kappa (K) Architecture is one of the new software architecture patterns for the new Data era. It’s mainly used for processing streaming data. Kappa architecture gets the name Kappa from the Greek letter (K) and is attributed to Jay Kreps for introducing this architecture.

The main idea behind the Kappa Architecture is that both the real-time and batch processing can be carried out, especially for analytics, with a single technology stack. The data from IoT, streaming, and static/batch sources or near real-time sources like change data capture is ingested into messaging/ pub-sub platforms like Apache Kafka.

An append-only immutable log store is used in the Kappa Architecture as the canonical store. Following are the pub/sub or message buses or log databases that can be used for ingestion:

  • Amazon Quantum Ledger Database (QLDB)
  • Apache Kafka
  • Apache Pulsar
  • Amazon Kinesis
  • Amazon DynamoDB Streams
  • Azure Cosmos DB Change Feed
  • Azure EventHub
  • DistributedLog
  • EventStore
  • Chronicle Queue
  • Pravega

Distributed Stream processing engines like Apache Spark, Apache Flink, etc. will read the data from the streaming platform and transform it into an analyzable format, and then store it into an analytics database in the serving layer. Following are some of the distributed streaming computation systems

  • Amazon Kinesis
  • Apache Flink
  • Apache Samza
  • Apache Spark
  • Apache Storm
  • Apache Beam
  • Azure Stream Analytics
  • Hazelcast Jet
  • Kafka Streams
  • Onyx
  • Siddhi

In short, any query in the Kappa Architecture is defined by the following functional equation.

Query = λ (Complete data) = λ (live streaming data) * λ (Stored data)

The equation means that all the queries can be catered by applying Kappa function to the live streams of data at the speed layer. It also signifies that the stream processing occurs on the speed layer in Kappa architecture.

Pros and Cons of Kappa architecture

Pros

  • Any architecture that is used to develop data systems that doesn’t need batch layer like online learning, real-time monitoring & alerting system, can use Kappa Architecture.
  • If computations and analysis done in the batch and streaming layer are identical, then using Kappa is likely the best solution.
  • Re-computations or re-iterations is required only when the code changes.
  • It can be deployed with fixed memory.
  • It can be used for horizontally scalable systems.
  • Fewer resources are required as the machine learning is being done on the real-time basis.

Cons

Absence of batch layer might result in errors during data processing or while updating the database that requires having an exception manager to reprocess the data or reconciliation.

On finding the right architecture for any data driven organizations, a lot of considerations were taken in. Like most successful analytics project, which involves streaming first approach, the key is to start small in scope with well-defined deliverables, then iterate. The reason for considering distributed systems architecture (Generic Lambda or unified Lambda or Kappa) is due to minimized time to value.

Sources

About the Author

Bargunan Somasundaram

Bargunan Somasundaram

Bargunan is a Big Data Engineer and a programming enthusiast. His passion is to share his knowledge by writing his experiences about them. He believes “Gaining knowledge is the first step to wisdom and sharing it is the first step to humanity.”

Addressing Web Application Performance Issues

With the use of hybrid technologies and distributed components, the applications are becoming increasingly complex. Irrespective of the complexity, it is quite important to ensure the end-user gets an excellent experience in using the application. Hence, it is mandatory to monitor the performance of an application to provide greater satisfaction to the end-user.

External factors

When the web applications face performance issues, here are some questions you need to ask:

  • Does the application always face performance issues or just during a specific period?
  • Whether a particular user or group of users face the issue or is the problem omnipresent for all the users?
  • Are you treating your production environment as real production environment or have you loaded it with applications, services, and background processes running without any proper consideration?
  • Was there any recent release to any of the application stack like Web, Middle Tier, API, DB, etc., and how was the performance before this release?
  • Have there been any hardware or software upgrades recently?

Action items on the ground

Answering the above set of questions would have brought you closer to the root cause. If not, given below are some steps you can do to troubleshoot the performance issue:

  • Look at the number of incoming requests, is the application facing unusual load?
  • Identify how many requests are delaying more than a usual level, say more than 5000 milliseconds to serve a request, or a web page.
  • Is the load getting generated by a specific or group of users – is someone trying to create intentional load?
  • Look at the web pages/methods/functions in the source code which are taking more time. Check the logs of the web server, this can be identified provided the application does that level of custom logging.
  • Identify whether any 3rd party links or APIs which are being used in the application is causing slowness.
  • Check whether the database queries are taking more time.
  • Identify whether the problem is related to a certain browser.
  • Check if the server side or client side is facing any uncaught exceptions which are impacting the performance.
  • Check the performance of the CPU, Memory, and Disk of the server(s) in which the application is hosted.
  • Check the sibling processes which are consuming more Memory/CPU/Disk in all servers and take appropriate action depending on whether those background processes need to be in that server or can be moved somewhere or can be removed totally.
  • Look at the web server performance to fine tune the Cache, Session time out, Pool size, and Queue-length.
  • Check for deadlock, buffer hit ratio, IO Busy, etc. to fine tune the performance.

Challenges 

  • Doing all these steps exactly when there is a performance issue may not be practically all the time. By the time you collect some of these, you may lose important data for the rest of the items unless the history data is collected and stored for reference.
  • Even if the data is collected, correlating them to arrive at the exact root cause is not an easy task
  • You need to be tech savvy across all layers to know what parameters to collect and how to collect.

And the list of challenges goes on…

Think of an ideal situation where you have metrics of all these action items described above, right in front of you. Is there such magic bullet available? Yes, Zero Incident FrameworkTM Application Performance Monitoring (ZIF APM), it gives you the above details at your fingertips, thereby makes troubleshooting a simple task.

ZIF APM has more to offer than other regular APM. The APM Engine has built-in AI features. It monitors the application across all layers, starting from end-user, web application, web server, API layers, databases, underlying infrastructure that includes the OS and performance factors, irrespective of whether these layers are hosted on cloud or on-premise or both. It also applies the AI for monitoring, mapping, tracing and analyze the pattern to provide the Observability and Insights. Given below is a typical representation of distributed application and its components. And the rest of the section covers, how ZIF APM provides such deep level of insights.

ZIF APM

Once the APM Engine is installed/run on portfolio servers, the build-in AI engine does the following automatically: 

  1. Monitors the performance of the application (Web) layer, Service Layer, API, and Middle tier and Maps the insights from User <–> Web <–> API <–> Database for each and every applications – No need to manually link Application 1 in Web Server A with API1 in Middle Tier B and so on.
  2. Traces the end-to-end user transaction journey for all transactions with Unique ID.
  3. Monitors the performance of the 3rd party calls (e.g. web service, API calls, etc.), no need to map them.
  4. Monitors the End User Experience through RUM (Real User Monitoring) without any end-user agent.

<A reference screenshot of how APM maps the user transaction journey across different nodes. The screenshot also gives the Method level performance insights>

Why choose ZIF APM? Key Features and Benefits

  1. All-in-One – Provides the complete insight of the underlying Web Server, API server, DB server related infrastructure metrics like CPU, Memory, Disk, and others.
  2. End-user experience (RUM) – Captures performance issues and anomalies faced by end-user at the browser side.
  3. Anomalies detection – Offers deeper insights on the exceptions faced by the application including the line number in the source code where the issue has occurred.
  4. Code-level insights – Gives details about which method and function calls within the source code is taking more time or slowing down the application.
  5. 3rd Party and DB Layer visibility – Provides the details about 3rd party APIs or Database calls and Queries which are delaying the web application response.
  6. AHI – Application Health Index is a scorecard based on A) End User Experience, B) Application Anomalies, C) Server Performance and D) Database performance factors that are applicable in the given environment or application. Weightage and number of components A, B, C, D are variables. For instance, if ‘Web server performance’ or ‘Network Performance’ needs to be brought in as new variable ‘E’, then accordingly the weightage will be adjusted/calculated against 100%.
  7. Pattern Analysis – Analyzes unusual spikes through pattern matching and alerts are provided.
  8. GTrace – Provides the transaction journey of the user transaction and the layers it is passing through and where the transaction slows down, by capturing the performance of each transaction of all users.
  9. JVM and CLR – Provides the Performance of the underlying operating system, Web server, and run time (JVM, CLR).
  10. LOG Monitoring – Provides deeper insight on the application logs.
  11. Problem isolation– ZIF APM helps in problem isolation by comparing the performance with another user in the same location at the same time.

Visit www.zif.ai for more details.

About the Author –

Suresh Kumar Ramasamy

Suresh heads the Monitor component of ZIF at GAVS. He has 20 years of experience in Native Applications, Web, Cloud, and Hybrid platforms from Engineering to Product Management. He has designed & hosted the monitoring solutions. He has been instrumental in conglomerating components to structure the Environment Performance Management suite of ZIF Monitor. Suresh enjoys playing badminton with his children. He is passionate about gardening, especially medicinal plants.

Ensure Service Availability and Reliability with ZIF

To survive in the current climate, most enterprises have already embarked on their digital transformation journeys. This is leading to uncertainty in the way applications and services supporting the applications are being monitored and managed. Inadequate information is leading to downtime in service availability for end-users eventually resulting in unhappy users and revenue loss.

Zero Incident Framework™ has been architected to address the IT Ops issues of today and tomorrow.

Leveraging the power of Artificial Intelligence on telemetry data ingested in real-time, ZIF can provide insights and resolve forecasted issues – resulting in the availability of application service when end-user wants the service at the right time.

Business Value delivered to customers from ZIF

  • Minimum 40% reduction in capital expenses and a minimum 50% reduction in IT operational cost
  • Faster resolution by 60% (MTTR)
  • Service availability of 99.99%
  • ZIF bots to increase productivity by a minimum of 80%
  • Increased user experience measured by metrics (UEI) User Experience Index
AI in operations management service

ICEBERG STATE IN ITOps

Many IT operations are in an ‘ICEBERG’ state even today. Do not be surprised if your organization is also one of them. Issues and incidents that surfaces to the top are the ones that are known to the team. But the unknown issues are not uncovered.

Therefore, enterprises have started to embark on artificial intelligence to help them identify and track the unknown issues within the complex IT landscape.

OBSERVABILITY USING ZIF

ZIF, architected and developed on the premise of observability, not only helps with visibility but also enables discovering deeper insights, thus freeing up more time for more strategic initiatives. This becomes critical to the overall success of Site Reliability Engineering (SRE) in enterprises.

Externalizing the internal state of systems, services, and application to the maximum, helps in complete observability.

Monitoring Vs. Observability?

automated discovery of networked services

Pillars of Observability – Events | Metrics | Traces

Ensure SERVICE RELIABILITY

“Reliability is defined as the probability that an application, system, or service will perform its intended function adequately for a specified period or will operate in a defined environment without failure.”

ZIF has mastered the art of predicting device, application & service failure, or performance degradation. This unique proposition from ZIF gives IT engineers the edge on service reliability of all applications, systems, or services that they are responsible for. ZIF’s auto-remediation bots can resolve predicted issues to make sure the intended function performs as and when expected by users.

SERVICE AVAILABILITY

Availability is measured as the percentage of time your service or system or application is available.

A small variation in availability percentage will have to be addressed on priority. A 99.999% availability allows only 5.26 minutes of downtime a year, whereas 99% availability allows downtime of 3.65 days a year.

ZIF helps IT engineers achieve the agreed-upon availability of application or system by learning the usage of the system and application from the metrics that are collected from the environment. Collecting the right metrics helps in getting the right availability. With the help of unsupervised algorithms, patterns are learned which helps in discovering when the application or system is required the most and then predicting any potential downtime. With above 95% accuracy in prediction, ZIF can achieve 99.99% availability for application and devices which allows 52.56 minutes downtime a year.

ZIF’s goal has always been to deliver the right business outcomes for the stakeholders. Users have the privilege to choose what business outcomes are expected from the platform and the respective features are deployed in the enterprise to deliver the chosen outcome.

About the Author

Anoop Aravindakshan

An evangelist of Zero Incident FrameworkTM, Anoop has been a part of the product engineering team for long and has recently forayed into product marketing. He has over 14 years of experience in Information Technology across various verticals, which include Banking, Healthcare, Aerospace, Manufacturing, CRM, Gaming, and Mobile.

Is AR the Future of our Increasingly Digital World?

Imagine a device which, when used to look at something, throws up information on whatever you’re pointing at. Menus for restaurants, dates of establishment for institutes, and so on. These are the sort of possibilities afforded by Augmented Reality (AR).

What is AR?

AR is a science fiction idea that successfully made the transition to reality. The fundamental idea behind augmented reality is to add something extra to your experience of reality. So, if you are watching a movie or playing a game, AR adds to that experience in some way or form to turn the experience immersive and interactive. AR basically superimposes computer-generated information (audio, visual, haptic, etc.) on the real-world objects.

AR can be defined as a system that fulfills three basic features: a combination of real and virtual worlds, real-time interaction, and accurate 3D registration of virtual and real objects.

How does AR work?

A camera-equipped device is essential for an AR experience. Upon pointing the device at an object, computer vision technology is used to recognize it. The device then downloads information about the object from the cloud, in much the same way that a web browser loads a page via a URL. In this case, the information is presented in a 3-D experience.

ai automated root cause analysis solution

AR can provide a view of the real-time data flowing from products and allow users to control them by touchscreen, voice, or gesture. An operator using an AR headset to interact with an industrial robot might see superimposed data about the robot’s performance and gain access to its controls.

The size and orientation of objects viewed through the AR display adjusts/changes in real-time. New graphical or text information comes into view while other information passes out of view as the user moves about. In industrial settings, users in different roles, such as a machine operator and a maintenance technician, can look at the same object but be presented with different AR experiences that are tailored to their needs.

AR – a novel way of shopping

A 2018 Gartner report stated, “By 2020, 100 million consumers will shop in AR online and in-store.” The current global pandemic has put a damper on consumer sentiments worldwide and we may not see those numbers. But AR can help make the in-store shopping experience more secure by reducing the need to touch a lot of objects and surfaces.

Brands like American Apparel, Uniqlo, and Lacoste already have showrooms and fitting rooms that provide try-before-you-buy options in AR spaces. Smart mirror technologies that scan RFID tags also offer the ability to bring recommendations to the brick-and-mortar shopping experience.

ai data analytics monitoring tools

IKEA customers have access to an app that permits them to point their phones at spaces and see what different products would look like in their own homes.

In the current global climate, fashion and lifestyle brands stand to gain from technologies that handle facial recognition, adapt to local lighting conditions, and provide personalized recommendations.

ai devops platform management services

According to a BRP report, 48% consumers said they would be more inclined to buy from a retailer that provided AR experiences. Retailers may be able to attract more customers with an immersive and secure shopping experience in a post-Corona world.

35% of sales on Amazon are derived from its recommendation engine, which is powered by Machine Learning. Leveraging this in the real world also has immense commercial potential.

AR for Navigation Solutions

Map services from Google and Apple have already found mass acceptance, indoor navigation is next. Apps based on ARKit and ARCore can enable navigating inside spaces like airports, malls, hospitals, etc. Gatwick Airport has already deployed its own smartphone solution that provides routes to terminals and gates based on a user’s flight number.

In 2019, a beta version of AR walking directions feature was launched for Google Maps for all AR-compatible iOS and Android mobile devices. You could view information about your surroundings by pointing your phone’s camera towards it.

AR in Automotive Industry

AR can be used in a breadth of ways in the automotive industry. Starting with dashboard-mounted heads-up displays to interactive experiences in showrooms and more.

AR is also employed by some carmakers to help aid in car maintenance (Volkswagen’s Marta app) and car manufacturing and selling processes (Volvo’s project with Microsoft HoloLens).

The heads-up display is one of the most popular uses of AR in this industry. Not only can drivers get directions and alerts on hazards, but also information on landmarks and nearby locations.

Hyundai has been a leader in AR research that goes beyond the cockpit-style view of the motorist’s experience. They have reimagined maintenance manuals with AR and has apps to point their phones at their cars to get information. Mercedes has a similar app, but its version adds a chatbot to provide virtual assistance.

AR in Healthcare

Applications of AR is opening up new opportunities in the healthcare industry. It’s expected that the global market will reach a value of $1.5B. By enabling healthcare workers with real-time data and patient information, AR can aid in more accurate diagnoses and more precise surgeries.

application performance management solutions

AR can also bring huge value to practicing medicine and education by allowing students and trainee physicians to better visualize health issues and scenarios that they one day will be treating. The benefit that AR can bring to the healthcare industry can be ground-breaking and we are just witnessing the beginning of what is to come from AR in the field of medicine.

AR-powered Solutions for Enterprises

Smart glasses are quickly gaining popularity. Military, medical and enterprise solutions, however, are beginning to prove the value of combining AR with headsets and smart glasses.

Microsoft HoloLens 2 was likely the most anticipated product in this space in 2019. The company hopes to roll out its technology to great fanfare by demonstrating improvements in raw processing power, battery life, and wear ability. The U.S. Army has awarded a $480 contract to Microsoft, and they are also working with the industrial IoT firm PTC to streamline the development of both augmented and mixed reality products.

applications of predictive analytics in business

Walmart and Tyson are testing programs that will transition traditional training methods into mixed reality (MR) settings. This will bring about new ways to learn about compliance and safety issues by looking around mixed-reality environments and identifying problems in a way that’s practical and engaging. Integration with other recent workplace training trends, especially gamification, may compound the returns that AR and MR solutions generate. Per ABI Research, AR-based training in enterprise will be a $6 billion industry by 2022.

Improvements in prototyping, testing, troubleshooting, and quality control are expected to emerge from this trend, too, as workers will be able to make on-the-fly comparisons of real-world items against available documentation and specifications. Jobs that call for workers’ hands to be free will also benefit significantly from AR headsets and glasses.

Augmented reality is the next ‘BIG THING’, it will absolutely revolutionize almost every aspect of life. Everything from medicine to education to construction to entertainment. AR application has already started to appear on the world’s laptops, tablets, and smartphones.

References

https://www.sciencedirect.com/topics/computer-science/augmented-reality

https://www.mantralabsglobal.com/blog/disruptive-augmented-reality-use-cases/

https://www.vxchnge.com/blog/augmented-reality-statistics

About the Author

Kalpana Vijayakumar

Kalpana is a database developer. She strongly believes that “It’s not that we use technology, we live technology.”
Outside of her professional role, Kalpana is passionate about travelling and watching movies.

Algorithmic Alert Correlation

Today’s always-on businesses and 24×7 uptime demands have necessitated IT monitoring to go into overdrive. While constant monitoring is a good thing, the downside is that the flood of alerts generated can quickly get overwhelming. Constantly having to deal with thousands of alerts each day causes alert fatigue, and impacts the overall efficiency of the monitoring process.

Hence, chalking out an optimal strategy for alert generation & management becomes critical. Pattern-based thresholding is an important first step, since it tunes thresholds continuously, to adapt to what ‘normal’ is, for the real-time environment. Threshold accuracy eliminates false positives and prevents alerts from getting fired incorrectly. Selective alert suppression during routine IT Ops maintenance activities like backups, patches, or upgrades, is another. While there are many other strategies to keep alert numbers under control, a key process in alert management is the grouping of alerts, known as alert correlation. It groups similar alerts under one actionable incident, thereby reducing the number of alerts to be handled individually.

But, how is alert ‘similarity’ determined? One way to do this is through similarity definitions, in the context of that IT landscape. A definition, for instance, would group together alerts generated from applications on the same host, or connectivity issues from the same data center. This implies that similarity definitions depend on the physical and logical relationships in the environment – in other words – the topology map. Topology mappers detect dependencies between applications, processes, networks, infrastructure, etc., and construct an enterprise blueprint that is used for alert correlation.

But what about related alerts generated by entities that are neither physically nor logically linked? To give a hypothetical example, let’s say application A accesses a server S which is responding slowly, and so A triggers alert A1. This slow communication of A with S eats up host bandwidth, and hence affects another application B in the same host. Due to this, if a third application C from another host calls B, alert A2 is fired by C due to the delayed response from B.  Now, although we see the link between alerts A1 & A2, they are neither physically nor logically related, so how can they be correlated? In reality, such situations could imply thousands of individual alerts that cannot be combined.

Algorithmic Alert Correlation

This is one of the many challenges in IT operations that we have been trying to solve at GAVS. The correlation engine of our AIOps Platform ZIF uses algorithmic alert correlation to find a solution for this problem. We are working on two unsupervised machine learning algorithms that are fundamentally different in their approach – one based on pattern recognition and the other based on spatial clustering. Both algorithms can function with or without a topology map, and work around what is supplied and available. The pattern learning algorithm derives associations based on learnings from historic patterns of alert relationships. The spatial clustering algorithm works on the principle of similarity based on multiple features of alerts, including problem similarity derived by applying Natural Language Processing (NLP), and relationships, among several others. Tuning parameters enable customization of algorithmic behavior to meet specific demands, without requiring modifications to the core algorithms. Time is also another important dimension factored into these algorithms, since the clustering of alerts generated over an extended period of time will not give meaningful results.

Traditional alert correlation has not been able to scale up to handle the volume and complexity of alerts generated by the modern-day hybrid and dynamic IT infrastructure. We have reached a point where our ITOps needs have surpassed the limits of human capabilities, and so, supplementing our intelligence with Artificial Intelligence and Machine Learning has now become indispensable.

About the Authors –

Padmapriya Sridhar

Priya is part of the Marketing team at GAVS. She is passionate about Technology, Indian Classical Arts, Travel, and Yoga. She aspires to become a Yoga Instructor someday!

Gireesh Sreedhar KP

Gireesh is a part of the projects run in collaboration with IIT Madras for developing AI solutions and algorithms. His interest includes Data Science, Machine Learning, Financial markets, and Geo-politics. He believes that he is competing against himself to become better than who he was yesterday. He aspires to become a well-recognized subject matter expert in the field of Artificial Intelligence.