Is Your Investment in TRUE AI?

Yes, AIOps the messiah of ITOps is here to stay! The Executive decision now is on the who and how, rather than when. With a plethora of products in the market offering varying shades of AIOps capabilities, choosing the right vendor is critical, to say the least.

Exclusively AI-based Ops?

Simply put, AIOps platforms leverage Big Data & AI technologies to enhance IT operations. Gartner defines Acquire, Aggregate, Analyze & Act as the four stages of AIOps. These four fall under the purview of Monitoring tools, AIOps Platforms & Action Platforms. However, there is no Industry-recognized mandatory feature list to be supported, for a Platform to be classified as AIOps. Due to this ambiguity in what an AIOps Platform needs to Deliver, huge investments made in rosy AIOps promises can lead to sub-optimal ROI, disillusionment or even derailed projects. Some Points to Ponder…

  • Quality in, Quality out. The value delivered from an AIOps investment is heavily dependent on what data goes into the system. How sure can we be that IT Asset or Device monitoring data provided by the Customer is not outdated, inaccurate or patchy? How sure can we be that we have full visibility of the entire IT landscape? With Shadow IT becoming a tacitly approved aspect of modern Enterprises, are we seeing all devices, applications and users? Doesn’t this imply that only an AIOps Platform providing Application Discovery & Topology Mapping, Monitoring features would be able to deliver accurate insights?
  • There is a very thin line between Also AI and Purely AI. Behind the scenes, most AIOps Platforms are reliant on CMDB or similar tools, which makes Insights like Event Correlation, Noise Reduction etc., rule-based. Where is the AI here?
  • In Gartner’s Market Guide, apart from support features for the different data types, Automated Pattern Discovery is the only other Capability taken into account for the Capabilities of AIOps Vendors matrix. With Gartner being one of the most trusted Technology Research and Advisory companies, it is natural for decision makers to zero-in on one of these listed vendors. What is not immediately evident is that there is so much more to AIOps than just this, and with so much at stake, companies need to do their homework and take informed decisions before finalizing their vendor.
  • Most AIOps vendors ingest, provide access to & store heterogenous data for analysis, and provide actionable Insights and RCA; at which point the IT team takes over. This is a huge leap forward, since it helps IT work through the data clutter and significantly reduces MTTR. But, due to the absence of comprehensive Predictive, Prescriptive & Remediation features, these are not end-to-end AIOps Platforms.
  • At the bleeding edge of the Capability Spectrum is Auto-Remediation based on Predictive & Prescriptive insights. A Comprehensive end-to-end AIOps Platform would need to provide a Virtual Engineer for Auto-Remediation. But, this is a grey area not fully catered to by AIOps vendors.  

The big question now is, if an AIOps Platform requires human intervention or multiple external tools to take care of different missing aspects, can it rightfully claim to be true end-to-end AIOps?

So, what do we do?

Time for you to sit back and relax! Introducing ZIF- One Solution for all your ITOps ills!

We have you completely covered with the full suite of tools that an IT infrastructure team would need. We deliver the entire AIOps Capability spectrum and beyond.

ZIF (Zero Incident Framework™) is an AIOps based TechOps platform that enables proactive Detection and Remediation of incidents helping organizations drive towards a Zero Incident Enterprise™.

The Key Differentiator is that ZIF is a Pure-play AI Platform powered by Unsupervised Pattern-based Machine Learning Algorithms. This is what sets us a Class Apart.

  • Rightly aligns with the Gartner AIOps strategy. ZIF is based on and goes beyond the AIOps framework
  • Huge Investments in developing various patented AI Machine Learning algorithms, Auto-Discovery modules, Agent & Agentless Application Monitoring tools, Network sniffers, Process Automation, Remediation & Orchestration capabilities to form Zero Incident Framework™
  • Powered entirely by Unsupervised Pattern-based Machine Learning Algorithms, ZIF needs no further human intervention and is completely Self-Reliant
  • Unsupervised ML empowers ZIF to learn autonomously, glean Predictive & Prescriptive Intelligence and even uncover Latent Insights
  • The 5 Modules can work together cohesively or as independent stand-alone components
  • Can be Integrated with existing Monitoring and ITSM tools, as required
  • Applies LEAN IT Principle and is on an ambitious journey towards FRICTIONLESS IT.

Realizing a Zero Incident EnterpriseTM

Optimizing ITOps for Digital Transformation

The key focus of Digital Transformation is removing procedural bottlenecks and bending the curve on productivity. As Chief Insights Officer, Forbes Media says, Digital Transformation is now “essential for corporate survival”.

Emerging technologies are enabling dramatic innovations in IT infrastructure and operations. It is no longer just about hardware, software, data centers, the cloud or the service desk; it is about backing business strategies. So, here are some reasons why companies should think about redesigning their IT services to embrace digital disruption.

DevOps for Agility

As companies move away from the traditional Waterfall model of software development and adopt Agile methodologies, IT infrastructure and operations also need to become agile and malleable. Agility has become indispensible to stay competitive in this era of dynamism and constant change. What started off as a set of software development methodologies has now permeated all aspects of an organization, ITOps being one of them. Development, QA and IT teams need to come out of their silos and work in tandem for constant productive collaboration, in what is termed DevOps.

Shorter development & deployment cycles have necessitated overall ITOps efficiency and among other things, IT enviroment provisioning to be on-demand and self-service. Provisioning needs to be automated and built into the CI/CD pipeline.  

Downtime Mitigation

With agility being the org-wide mantra, predictable IT uptime becomes a mandate. Outages incur a very high cost and adversely affect the pace of innovation. The average cost of unplanned application downtime for Fortune 1000 companies is anywhere between $1.25 billion to $2.5 billion, says a report by DevOps.com. It further goes on to say that, infrastructure failure can cost the bottom line $100,000/hr and the cost of critical application failure is $500,000 to $1 million/hr.

ITOps must stay ahead of the game by eliminating outdated legacy systems, tools, technologies and workflows. End-to-end automation is key. IT needs to modernize its stack by zeroing-in on tools for Discovery of the complete IT landscape, Monitoring of devices, Analytics for noise reduction and event correlation, AI-based tools for RCA, incident Prediction and Auto-Remediation. All of this intelligent automation will help proactive response rather than a reactive response after the fact, when the damage has already been done.

Moving away from the shadows

Shadow IT, the use of technology outside the IT purview, is becoming a tacitly approved aspect of most modern enterprises. It is a result of proliferation of technology and the cloud offering easy access to applications and storage. Users of Shadow IT systems bypass the IT approval and provisioning process to use unauthorized technology, without the consent of the IT department. There are huge security and compliance risks waiting to happen if this sprawling syndrome is not reined in. To bring Shadow IT under control, the IT dept must first know about it. This is where automated Discovery tools bring in a lot of value by automating the process of application discovery and topology mapping.

Moving towards Hybrid IT

Hybrid IT means the use of an optimal, cost-effective mix of public & private clouds and on-premise systems that enable an infrastructure that is dynamic, on-demand, scalable, and composable. IT spend on datacenters is seeing a downward trend. Most organizations are thinking beyond traditional datacentres to options in the cloud. Colocation is an important consideration since it delivers better availability, energy and time savings, scalability and reduces the impact of network latency. Organizations are only keeping mission-critical processes that require close monitoring & control, on-premise.

Edge computing

Gartner defines edge computing as solutions that facilitate data processing at or near the source of data generation. With huge volumes of data being churned out at rapid rates, for instance by monitoring or IoT devices, it is highly inefficient to stream all this data to a centralized datacenter or cloud for processing. Organizations now understand the value in a decentralized approach to address modern digital infrastructure needs. Edge computing serves as the decentralized extension of the datacenter/cloud and addresses the need for localized computing power.

CyberSecurity

Cyber attacks are on the rise and securing networks and protecting data is posing big challenges. With Hybrid IT, IoT, Edge computing etc, extension of the IT footprint beyond secure enterprise boundaries has increased the number of attack target points manifold. IT teams need to be well versed with the nuances of security set-up in different cloud vendor environments. There is a lot of ambiguity in ownership of data integrity, in the wake of data being spread across on-premise, cloud environments, shared workstations and virtual machines. With Hybrid IT deployments, a comprehensive security plan regardless of the data’s location has gained paramount importance.

Upskilling IT Teams

With blurring lines between Dev and IT, there is increasing demand for IT professionals equipped with a broad range of cross-functional skills in addition to core IT competencies. With constant emergence of new technologies, there is usually not much clarity on the exact skillsets required by the IT team in an organization. More than expertise in one specific area, IT teams need to be open to continuous learning to adapt to changing IT environments, to close the skills gap and support their organization’s Digital Transformation goals.

READ ALSO OUR NEW UPDATES

AIOps – IT Infrastructure Services for the Digital Age

The IT infrastructure services landscape is undergoing a significant shift, driven by digitalization. As focus shifts from cost efficiency to digital enablement, organizations need to re-imagine the IT infrastructure services model to deliver the necessary back-end agility, flexibility, and fluidity. Automation, analytics, and Artificial Intelligence (AI) – comprising the “codifying elements” for driving AIOps – help drive this desired level of adaptability within IT infrastructure services. Automation, analytics, and AI – which together comprise the “codifying elements” for driving AIOps– help drive the desired level of adaptiveness within IT infrastructure services. Intelligent automation, leveraging analytics and ML, embeds powerful, real-time business and user context and autonomy into IT infrastructure services. Intelligent automation has made inroads in enterprises in the last two to three years, backed by a rapid proliferation and maturation of solutions in the market.

Artificial Intelligence Operations (AIOps) . Everest Group 2018 Report . IT Infrastructure

Benefits of codification of IT infrastructure services

Progressive leverage of analytics and AI, to drive an AIOps strategy, enables the introduction of a broader and more complex set of operational use cases into IT infrastructure services automation. As adoption levels scale and processes become orchestrated, the benefits potentially expand beyond cost savings to offer exponential value around user experience enrichment, services agility and availability, and operations resilience. Intelligent automation helps maximize value from IT infrastructure services by:

  1. Improving the end-user experience through contextual and personalized support
  2. Driving faster resolution of known/identified incidents leveraging existing knowledge, intelligent diagnosis, and reusable, automated workflows
  3. Avoiding potential incidents and improving business systems performance through contextual learning (i.e., based on relationships among systems), proactive health monitoring and anomaly detection, and preemptive healing

Although the benefits of intelligent automation are manifold, enterprises are yet to realize commensurate advantage from investments in infrastructure services codification. Siloed adoption, lack of well-defined change management processes, and poor governance are some of the key barriers to achieving the expected value.  The design should involve an optimal level of human effort/intervention targeted primarily at training, governing, and enhancing the system, rather than executing routine, voluminous tasks.  A phased adoption of automation, analytics, and AI within IT infrastructure services has the potential to offer exponential business value. However, to realize the full potential of codification, enterprises need to embrace a lean operating model, underpinned by a technology-agnostic platform. The platform should embed the codifying elements within a tightly integrated infrastructure services ecosystem with end-to-end workflow orchestration and resolution.

The market today has a wide choice of AIOps solutions, but the onus is on enterprises to select the right set of tools / technologies that align with their overall codification strategy.

Click here to read the complete whitepaper by Everest Group

READ ALSO OUR NEW UPDATES