Is AR the Future of our Increasingly Digital World?

Imagine a device which, when used to look at something, throws up information on whatever you’re pointing at. Menus for restaurants, dates of establishment for institutes, and so on. These are the sort of possibilities afforded by Augmented Reality (AR).

What is AR?

AR is a science fiction idea that successfully made the transition to reality. The fundamental idea behind augmented reality is to add something extra to your experience of reality. So, if you are watching a movie or playing a game, AR adds to that experience in some way or form to turn the experience immersive and interactive. AR basically superimposes computer-generated information (audio, visual, haptic, etc.) on the real-world objects.

AR can be defined as a system that fulfills three basic features: a combination of real and virtual worlds, real-time interaction, and accurate 3D registration of virtual and real objects.

How does AR work?

A camera-equipped device is essential for an AR experience. Upon pointing the device at an object, computer vision technology is used to recognize it. The device then downloads information about the object from the cloud, in much the same way that a web browser loads a page via a URL. In this case, the information is presented in a 3-D experience.

ai automated root cause analysis solution

AR can provide a view of the real-time data flowing from products and allow users to control them by touchscreen, voice, or gesture. An operator using an AR headset to interact with an industrial robot might see superimposed data about the robot’s performance and gain access to its controls.

The size and orientation of objects viewed through the AR display adjusts/changes in real-time. New graphical or text information comes into view while other information passes out of view as the user moves about. In industrial settings, users in different roles, such as a machine operator and a maintenance technician, can look at the same object but be presented with different AR experiences that are tailored to their needs.

AR – a novel way of shopping

A 2018 Gartner report stated, “By 2020, 100 million consumers will shop in AR online and in-store.” The current global pandemic has put a damper on consumer sentiments worldwide and we may not see those numbers. But AR can help make the in-store shopping experience more secure by reducing the need to touch a lot of objects and surfaces.

Brands like American Apparel, Uniqlo, and Lacoste already have showrooms and fitting rooms that provide try-before-you-buy options in AR spaces. Smart mirror technologies that scan RFID tags also offer the ability to bring recommendations to the brick-and-mortar shopping experience.

ai data analytics monitoring tools

IKEA customers have access to an app that permits them to point their phones at spaces and see what different products would look like in their own homes.

In the current global climate, fashion and lifestyle brands stand to gain from technologies that handle facial recognition, adapt to local lighting conditions, and provide personalized recommendations.

ai devops platform management services

According to a BRP report, 48% consumers said they would be more inclined to buy from a retailer that provided AR experiences. Retailers may be able to attract more customers with an immersive and secure shopping experience in a post-Corona world.

35% of sales on Amazon are derived from its recommendation engine, which is powered by Machine Learning. Leveraging this in the real world also has immense commercial potential.

AR for Navigation Solutions

Map services from Google and Apple have already found mass acceptance, indoor navigation is next. Apps based on ARKit and ARCore can enable navigating inside spaces like airports, malls, hospitals, etc. Gatwick Airport has already deployed its own smartphone solution that provides routes to terminals and gates based on a user’s flight number.

In 2019, a beta version of AR walking directions feature was launched for Google Maps for all AR-compatible iOS and Android mobile devices. You could view information about your surroundings by pointing your phone’s camera towards it.

AR in Automotive Industry

AR can be used in a breadth of ways in the automotive industry. Starting with dashboard-mounted heads-up displays to interactive experiences in showrooms and more.

AR is also employed by some carmakers to help aid in car maintenance (Volkswagen’s Marta app) and car manufacturing and selling processes (Volvo’s project with Microsoft HoloLens).

The heads-up display is one of the most popular uses of AR in this industry. Not only can drivers get directions and alerts on hazards, but also information on landmarks and nearby locations.

Hyundai has been a leader in AR research that goes beyond the cockpit-style view of the motorist’s experience. They have reimagined maintenance manuals with AR and has apps to point their phones at their cars to get information. Mercedes has a similar app, but its version adds a chatbot to provide virtual assistance.

AR in Healthcare

Applications of AR is opening up new opportunities in the healthcare industry. It’s expected that the global market will reach a value of $1.5B. By enabling healthcare workers with real-time data and patient information, AR can aid in more accurate diagnoses and more precise surgeries.

application performance management solutions

AR can also bring huge value to practicing medicine and education by allowing students and trainee physicians to better visualize health issues and scenarios that they one day will be treating. The benefit that AR can bring to the healthcare industry can be ground-breaking and we are just witnessing the beginning of what is to come from AR in the field of medicine.

AR-powered Solutions for Enterprises

Smart glasses are quickly gaining popularity. Military, medical and enterprise solutions, however, are beginning to prove the value of combining AR with headsets and smart glasses.

Microsoft HoloLens 2 was likely the most anticipated product in this space in 2019. The company hopes to roll out its technology to great fanfare by demonstrating improvements in raw processing power, battery life, and wear ability. The U.S. Army has awarded a $480 contract to Microsoft, and they are also working with the industrial IoT firm PTC to streamline the development of both augmented and mixed reality products.

applications of predictive analytics in business

Walmart and Tyson are testing programs that will transition traditional training methods into mixed reality (MR) settings. This will bring about new ways to learn about compliance and safety issues by looking around mixed-reality environments and identifying problems in a way that’s practical and engaging. Integration with other recent workplace training trends, especially gamification, may compound the returns that AR and MR solutions generate. Per ABI Research, AR-based training in enterprise will be a $6 billion industry by 2022.

Improvements in prototyping, testing, troubleshooting, and quality control are expected to emerge from this trend, too, as workers will be able to make on-the-fly comparisons of real-world items against available documentation and specifications. Jobs that call for workers’ hands to be free will also benefit significantly from AR headsets and glasses.

Augmented reality is the next ‘BIG THING’, it will absolutely revolutionize almost every aspect of life. Everything from medicine to education to construction to entertainment. AR application has already started to appear on the world’s laptops, tablets, and smartphones.

References

https://www.sciencedirect.com/topics/computer-science/augmented-reality

https://www.mantralabsglobal.com/blog/disruptive-augmented-reality-use-cases/

https://www.vxchnge.com/blog/augmented-reality-statistics

About the Author

Kalpana Vijayakumar

Kalpana is a database developer. She strongly believes that “It’s not that we use technology, we live technology.”
Outside of her professional role, Kalpana is passionate about travelling and watching movies.

Algorithmic Alert Correlation

Today’s always-on businesses and 24×7 uptime demands have necessitated IT monitoring to go into overdrive. While constant monitoring is a good thing, the downside is that the flood of alerts generated can quickly get overwhelming. Constantly having to deal with thousands of alerts each day causes alert fatigue, and impacts the overall efficiency of the monitoring process.

Hence, chalking out an optimal strategy for alert generation & management becomes critical. Pattern-based thresholding is an important first step, since it tunes thresholds continuously, to adapt to what ‘normal’ is, for the real-time environment. Threshold accuracy eliminates false positives and prevents alerts from getting fired incorrectly. Selective alert suppression during routine IT Ops maintenance activities like backups, patches, or upgrades, is another. While there are many other strategies to keep alert numbers under control, a key process in alert management is the grouping of alerts, known as alert correlation. It groups similar alerts under one actionable incident, thereby reducing the number of alerts to be handled individually.

But, how is alert ‘similarity’ determined? One way to do this is through similarity definitions, in the context of that IT landscape. A definition, for instance, would group together alerts generated from applications on the same host, or connectivity issues from the same data center. This implies that similarity definitions depend on the physical and logical relationships in the environment – in other words – the topology map. Topology mappers detect dependencies between applications, processes, networks, infrastructure, etc., and construct an enterprise blueprint that is used for alert correlation.

But what about related alerts generated by entities that are neither physically nor logically linked? To give a hypothetical example, let’s say application A accesses a server S which is responding slowly, and so A triggers alert A1. This slow communication of A with S eats up host bandwidth, and hence affects another application B in the same host. Due to this, if a third application C from another host calls B, alert A2 is fired by C due to the delayed response from B.  Now, although we see the link between alerts A1 & A2, they are neither physically nor logically related, so how can they be correlated? In reality, such situations could imply thousands of individual alerts that cannot be combined.

Algorithmic Alert Correlation

This is one of the many challenges in IT operations that we have been trying to solve at GAVS. The correlation engine of our AIOps Platform ZIF uses algorithmic alert correlation to find a solution for this problem. We are working on two unsupervised machine learning algorithms that are fundamentally different in their approach – one based on pattern recognition and the other based on spatial clustering. Both algorithms can function with or without a topology map, and work around what is supplied and available. The pattern learning algorithm derives associations based on learnings from historic patterns of alert relationships. The spatial clustering algorithm works on the principle of similarity based on multiple features of alerts, including problem similarity derived by applying Natural Language Processing (NLP), and relationships, among several others. Tuning parameters enable customization of algorithmic behavior to meet specific demands, without requiring modifications to the core algorithms. Time is also another important dimension factored into these algorithms, since the clustering of alerts generated over an extended period of time will not give meaningful results.

Traditional alert correlation has not been able to scale up to handle the volume and complexity of alerts generated by the modern-day hybrid and dynamic IT infrastructure. We have reached a point where our ITOps needs have surpassed the limits of human capabilities, and so, supplementing our intelligence with Artificial Intelligence and Machine Learning has now become indispensable.

About the Authors –

Padmapriya Sridhar

Priya is part of the Marketing team at GAVS. She is passionate about Technology, Indian Classical Arts, Travel, and Yoga. She aspires to become a Yoga Instructor someday!

Gireesh Sreedhar KP

Gireesh is a part of the projects run in collaboration with IIT Madras for developing AI solutions and algorithms. His interest includes Data Science, Machine Learning, Financial markets, and Geo-politics. He believes that he is competing against himself to become better than who he was yesterday. He aspires to become a well-recognized subject matter expert in the field of Artificial Intelligence.

Cloud Adoption, Challenges, and Solution Through Monitoring, AI & Automation

Cloud Adoption

Cloud computing is the delivery of computing services including Servers, Database, Storage, Networking & others over the internet. Public, Private & Hybrid clouds are different ways of deploying cloud computing.  

  • In public cloud, the cloud resources are owned by 3rd party cloud service provider
  • A private cloud consists of computing resources exclusively by one business or organization
  • Hybrid provides the best of both worlds, combines on-premises infrastructure, private cloud with public cloud

Microsoft, Google, Amazon, Oracle, IBM, and others are providing cloud platform to users to host and experience practical business solution. The worldwide public cloud services market is forecast to grow 17% in 2020 to total $266.4 billion and $354.6 billion in 2022, up from $227.8 billion in 2019, per Gartner, Inc.

There are various types of Instances, workloads & options available as part of cloud ecosystem, i.e. IaaS, PaaS, SaaS, Multi-cloud, Serverless.

Challenges

When very large, large and medium enterprise decides to move their IT environment from on-premise to cloud, they try to move some/most of their on-premises into cloud and keep the rest under their control on-premise. There are various factors that impact the decision, to name a few,

  1. ROI vs Cost of Cloud Instance, Operation cost
  2. Architecture dependency of the application, i.e. whether it is monolithic or multi-tier or polyglot or hybrid cloud
  3. Requirement and need for elasticity and scalability
  4. Availability of right solution from the cloud provider
  5. Security of some key data

After crossing all, once the IT environment is cloud-enabled, the challenge comes in ensuring the monitoring of the Cloud-enabled IT environment. Here are some of the business and IT challenges

1. How to ensure the various workloads & Instances are working as expected?

While the cloud provider may give high availability & up time depending on the tier we choose, it is important that our IT team monitors the environment, as in the case of IaaS and to some extent in PaaS as well.

2. How to ensure the Instances are optimally used in terms of compute and storage?

Cloud providers give most of the metrics around the Instances, though it may not provide all metrics that we may need to make decision in all scenarios.

The disadvantage with this model is, cost, latency & not straight forward, e.g. the LOG analytics which comes in Azure involves cost for every MB/GB of data that is stored and the latency in getting the right metrics at right time, if there is latency/delay, you may not get a right result

3. How to ensure the Application or the components of a single solution that are spread across on-premise and Cloud environment is working as expected?

Some cloud providers give tools for integrating the metrics from on-premise to cloud environment to have a shared view.

The disadvantage with this model is, it is not possible to bring in all sorts of data together to get the insights straight. That is, observability is always a question. The ownership of getting the observability lies with the IT team who handles the data.

4. How to ensure the Multi-Cloud + On-Premise environment is effectively monitored & utilized to ensure the best End-user experience?

Multi-Cloud environment – With rapid growing Microservices Architecture & Container based cloud enabled model, it is quite natural that the Enterprise may choose the best from different cloud providers like Azure, AWS, Google & others.

There is little support from cloud provider on this space. In fact, some cloud providers do not even support this scenario.

5. How to get a single panel of view for troubleshooting & root cause analysis?

Especially when problem occurs in Application, Database, Middle Tier, Network & 3rd party layers that are spread across multi-cluster, multi-cloud, elastic environment, it is very important to get a Unified view of entire environment.

ZIF (Zero Incident FrameworkTM), provides a single platform for Cloud Monitoring.

ZIF has Discovery, Monitoring, Prediction & Remediate that seamlessly fits for a cloud enabled solution. ZIF provides the unified dashboard with insights across all layers of IT infrastructure that is distributed across On-premise host, Cloud Instance & Containers.

Core features & benefits of ZIF for Cloud Monitoring are,

1. Discovery & Topology

  • Discovers and provides dynamic mapping of resources across all layers.
  • Provides real-time mapping of applications and its dependent layers irrespective of whether the components live on-premise, or on cloud or containerized in cloud.
  • Dynamically built topology of all layers which helps in taking effective decisions.

2. Observability across Multi-Cloud, Hybrid-Cloud & On-Premise tiers

  • It is not just about collecting metrics; it is very important to analyze the monitored data and provide meaningful insights.
  • When the IT infrastructure is spread across multiple cloud platform like Azure, AWS, Google Cloud, and others, it is important to get a unified view of your entire environment along with the on-premise servers.
  • Health of each layers are represented in topology format, this helps to understand the impact and take necessary actions.

3. Prediction driven decision for resource optimization

  • Prediction engine analyses the metrics of cloud resources and predicts the resource usage. This helps the resource owner to make proactive action rather than being reactive.
  • Provides meaningful insights and alerts in terms of the surge in the load, the growth in number of VMs, containers, and the usage of resource across other workloads.
  • Authorize the Elasticity & Scalability through real-time metrics.

4. Container & Microservice support

  • Understand the resource utilization of your containers that are hosted in Cloud & On-Premise.
  • Know the bottlenecks around the Microservices and tune your environment for the spikes in load.
  • Provides full support for monitoring applications distributed across your local host & containers in cloud in a multi-cluster setup.

5. Root cause analysis made simple

  • Quick root cause analysis by analysing various causes captured by ZIF Monitor instead of going through layer by layer. This saves time to focus on problem-solving and arresting instead of spending effort on identifying the root cause.
  • Provides insights across your workload including the impact due to 3rd party layers as well.

6. Automation

  • Irrespective of whether the workload and instance is on-premise or on Azure or AWS or other provider, the ZIF automation module can automate the basics to complex activities

7. Ensure End User Experience

  • Helps to improve the end-user experience who gets served by the workload from cloud.
  • The ZIF tracing helps to trace each & every request of each & every user, thereby it is quite natural for ZIF to unearth the performance bottleneck across all layers, which in turn helps to address the problem and thereby improve the User Experience

Cloud and Container Platform Support

ZIF Seamlessly integrates with following Cloud & Container environments,

  • Microsoft Azure
  • AWS
  • Google Cloud
  • Grafana Cloud
  • Docker
  • Kubernetes

About the Author

Suresh Kumar Ramasamy-Picture

Suresh Kumar Ramasamy


Suresh heads the Monitor component of ZIF at GAVS. He has 20 years of experience in Native Applications, Web, Cloud, and Hybrid platforms from Engineering to Product Management. He has designed & hosted the monitoring solutions. He has been instrumental in conglomerating components to structure the Environment Performance Management suite of ZIF Monitor.

Suresh enjoys playing badminton with his children. He is passionate about gardening, especially medicinal plants.

Is Your Investment in TRUE AI?

Yes, AIOps the messiah of ITOps is here to stay! The Executive decision now is on the who and how, rather than when. With a plethora of products in the market offering varying shades of AIOps capabilities, choosing the right vendor is critical, to say the least.

Exclusively AI-based Ops?

Simply put, AIOps platforms leverage Big Data & AI technologies to enhance IT operations. Gartner defines Acquire, Aggregate, Analyze & Act as the four stages of AIOps. These four fall under the purview of Monitoring tools, AIOps Platforms & Action Platforms. However, there is no Industry-recognized mandatory feature list to be supported, for a Platform to be classified as AIOps. Due to this ambiguity in what an AIOps Platform needs to Deliver, huge investments made in rosy AIOps promises can lead to sub-optimal ROI, disillusionment or even derailed projects. Some Points to Ponder…

  • Quality in, Quality out. The value delivered from an AIOps investment is heavily dependent on what data goes into the system. How sure can we be that IT Asset or Device monitoring data provided by the Customer is not outdated, inaccurate or patchy? How sure can we be that we have full visibility of the entire IT landscape? With Shadow IT becoming a tacitly approved aspect of modern Enterprises, are we seeing all devices, applications and users? Doesn’t this imply that only an AIOps Platform providing Application Discovery & Topology Mapping, Monitoring features would be able to deliver accurate insights?
  • There is a very thin line between Also AI and Purely AI. Behind the scenes, most AIOps Platforms are reliant on CMDB or similar tools, which makes Insights like Event Correlation, Noise Reduction etc., rule-based. Where is the AI here?
  • In Gartner’s Market Guide, apart from support features for the different data types, Automated Pattern Discovery is the only other Capability taken into account for the Capabilities of AIOps Vendors matrix. With Gartner being one of the most trusted Technology Research and Advisory companies, it is natural for decision makers to zero-in on one of these listed vendors. What is not immediately evident is that there is so much more to AIOps than just this, and with so much at stake, companies need to do their homework and take informed decisions before finalizing their vendor.
  • Most AIOps vendors ingest, provide access to & store heterogenous data for analysis, and provide actionable Insights and RCA; at which point the IT team takes over. This is a huge leap forward, since it helps IT work through the data clutter and significantly reduces MTTR. But, due to the absence of comprehensive Predictive, Prescriptive & Remediation features, these are not end-to-end AIOps Platforms.
  • At the bleeding edge of the Capability Spectrum is Auto-Remediation based on Predictive & Prescriptive insights. A Comprehensive end-to-end AIOps Platform would need to provide a Virtual Engineer for Auto-Remediation. But, this is a grey area not fully catered to by AIOps vendors.  

The big question now is, if an AIOps Platform requires human intervention or multiple external tools to take care of different missing aspects, can it rightfully claim to be true end-to-end AIOps?

So, what do we do?

Time for you to sit back and relax! Introducing ZIF- One Solution for all your ITOps ills!

We have you completely covered with the full suite of tools that an IT infrastructure team would need. We deliver the entire AIOps Capability spectrum and beyond.

ZIF (Zero Incident Framework™) is an AIOps based TechOps platform that enables proactive Detection and Remediation of incidents helping organizations drive towards a Zero Incident Enterprise™.

The Key Differentiator is that ZIF is a Pure-play AI Platform powered by Unsupervised Pattern-based Machine Learning Algorithms. This is what sets us a Class Apart.

  • Rightly aligns with the Gartner AIOps strategy. ZIF is based on and goes beyond the AIOps framework
  • Huge Investments in developing various patented AI Machine Learning algorithms, Auto-Discovery modules, Agent & Agentless Application Monitoring tools, Network sniffers, Process Automation, Remediation & Orchestration capabilities to form Zero Incident Framework™
  • Powered entirely by Unsupervised Pattern-based Machine Learning Algorithms, ZIF needs no further human intervention and is completely Self-Reliant
  • Unsupervised ML empowers ZIF to learn autonomously, glean Predictive & Prescriptive Intelligence and even uncover Latent Insights
  • The 5 Modules can work together cohesively or as independent stand-alone components
  • Can be Integrated with existing Monitoring and ITSM tools, as required
  • Applies LEAN IT Principle and is on an ambitious journey towards FRICTIONLESS IT.

Realizing a Zero Incident EnterpriseTM

Optimizing ITOps for Digital Transformation

The key focus of Digital Transformation is removing procedural bottlenecks and bending the curve on productivity. As Chief Insights Officer, Forbes Media says, Digital Transformation is now “essential for corporate survival”.

Emerging technologies are enabling dramatic innovations in IT infrastructure and operations. It is no longer just about hardware, software, data centers, the cloud or the service desk; it is about backing business strategies. So, here are some reasons why companies should think about redesigning their IT services to embrace digital disruption.

DevOps for Agility

As companies move away from the traditional Waterfall model of software development and adopt Agile methodologies, IT infrastructure and operations also need to become agile and malleable. Agility has become indispensible to stay competitive in this era of dynamism and constant change. What started off as a set of software development methodologies has now permeated all aspects of an organization, ITOps being one of them. Development, QA and IT teams need to come out of their silos and work in tandem for constant productive collaboration, in what is termed DevOps.

Shorter development & deployment cycles have necessitated overall ITOps efficiency and among other things, IT enviroment provisioning to be on-demand and self-service. Provisioning needs to be automated and built into the CI/CD pipeline.  

Downtime Mitigation

With agility being the org-wide mantra, predictable IT uptime becomes a mandate. Outages incur a very high cost and adversely affect the pace of innovation. The average cost of unplanned application downtime for Fortune 1000 companies is anywhere between $1.25 billion to $2.5 billion, says a report by DevOps.com. It further goes on to say that, infrastructure failure can cost the bottom line $100,000/hr and the cost of critical application failure is $500,000 to $1 million/hr.

ITOps must stay ahead of the game by eliminating outdated legacy systems, tools, technologies and workflows. End-to-end automation is key. IT needs to modernize its stack by zeroing-in on tools for Discovery of the complete IT landscape, Monitoring of devices, Analytics for noise reduction and event correlation, AI-based tools for RCA, incident Prediction and Auto-Remediation. All of this intelligent automation will help proactive response rather than a reactive response after the fact, when the damage has already been done.

Moving away from the shadows

Shadow IT, the use of technology outside the IT purview, is becoming a tacitly approved aspect of most modern enterprises. It is a result of proliferation of technology and the cloud offering easy access to applications and storage. Users of Shadow IT systems bypass the IT approval and provisioning process to use unauthorized technology, without the consent of the IT department. There are huge security and compliance risks waiting to happen if this sprawling syndrome is not reined in. To bring Shadow IT under control, the IT dept must first know about it. This is where automated Discovery tools bring in a lot of value by automating the process of application discovery and topology mapping.

Moving towards Hybrid IT

Hybrid IT means the use of an optimal, cost-effective mix of public & private clouds and on-premise systems that enable an infrastructure that is dynamic, on-demand, scalable, and composable. IT spend on datacenters is seeing a downward trend. Most organizations are thinking beyond traditional datacentres to options in the cloud. Colocation is an important consideration since it delivers better availability, energy and time savings, scalability and reduces the impact of network latency. Organizations are only keeping mission-critical processes that require close monitoring & control, on-premise.

Edge computing

Gartner defines edge computing as solutions that facilitate data processing at or near the source of data generation. With huge volumes of data being churned out at rapid rates, for instance by monitoring or IoT devices, it is highly inefficient to stream all this data to a centralized datacenter or cloud for processing. Organizations now understand the value in a decentralized approach to address modern digital infrastructure needs. Edge computing serves as the decentralized extension of the datacenter/cloud and addresses the need for localized computing power.

CyberSecurity

Cyber attacks are on the rise and securing networks and protecting data is posing big challenges. With Hybrid IT, IoT, Edge computing etc, extension of the IT footprint beyond secure enterprise boundaries has increased the number of attack target points manifold. IT teams need to be well versed with the nuances of security set-up in different cloud vendor environments. There is a lot of ambiguity in ownership of data integrity, in the wake of data being spread across on-premise, cloud environments, shared workstations and virtual machines. With Hybrid IT deployments, a comprehensive security plan regardless of the data’s location has gained paramount importance.

Upskilling IT Teams

With blurring lines between Dev and IT, there is increasing demand for IT professionals equipped with a broad range of cross-functional skills in addition to core IT competencies. With constant emergence of new technologies, there is usually not much clarity on the exact skillsets required by the IT team in an organization. More than expertise in one specific area, IT teams need to be open to continuous learning to adapt to changing IT environments, to close the skills gap and support their organization’s Digital Transformation goals.

READ ALSO OUR NEW UPDATES

AIOps – IT Infrastructure Services for the Digital Age

The IT infrastructure services landscape is undergoing a significant shift, driven by digitalization. As focus shifts from cost efficiency to digital enablement, organizations need to re-imagine the IT infrastructure services model to deliver the necessary back-end agility, flexibility, and fluidity. Automation, analytics, and Artificial Intelligence (AI) – comprising the “codifying elements” for driving AIOps – help drive this desired level of adaptability within IT infrastructure services. Automation, analytics, and AI – which together comprise the “codifying elements” for driving AIOps– help drive the desired level of adaptiveness within IT infrastructure services. Intelligent automation, leveraging analytics and ML, embeds powerful, real-time business and user context and autonomy into IT infrastructure services. Intelligent automation has made inroads in enterprises in the last two to three years, backed by a rapid proliferation and maturation of solutions in the market.

Artificial Intelligence Operations (AIOps) . Everest Group 2018 Report . IT Infrastructure

Benefits of codification of IT infrastructure services

Progressive leverage of analytics and AI, to drive an AIOps strategy, enables the introduction of a broader and more complex set of operational use cases into IT infrastructure services automation. As adoption levels scale and processes become orchestrated, the benefits potentially expand beyond cost savings to offer exponential value around user experience enrichment, services agility and availability, and operations resilience. Intelligent automation helps maximize value from IT infrastructure services by:

  1. Improving the end-user experience through contextual and personalized support
  2. Driving faster resolution of known/identified incidents leveraging existing knowledge, intelligent diagnosis, and reusable, automated workflows
  3. Avoiding potential incidents and improving business systems performance through contextual learning (i.e., based on relationships among systems), proactive health monitoring and anomaly detection, and preemptive healing

Although the benefits of intelligent automation are manifold, enterprises are yet to realize commensurate advantage from investments in infrastructure services codification. Siloed adoption, lack of well-defined change management processes, and poor governance are some of the key barriers to achieving the expected value.  The design should involve an optimal level of human effort/intervention targeted primarily at training, governing, and enhancing the system, rather than executing routine, voluminous tasks.  A phased adoption of automation, analytics, and AI within IT infrastructure services has the potential to offer exponential business value. However, to realize the full potential of codification, enterprises need to embrace a lean operating model, underpinned by a technology-agnostic platform. The platform should embed the codifying elements within a tightly integrated infrastructure services ecosystem with end-to-end workflow orchestration and resolution.

The market today has a wide choice of AIOps solutions, but the onus is on enterprises to select the right set of tools / technologies that align with their overall codification strategy.

Click here to read the complete whitepaper by Everest Group

READ ALSO OUR NEW UPDATES