Inverse Reinforcement Learning

Naresh B

What is Inverse Reinforcement Learning(IRL)?

Inverse reinforcement learning is a recently developed Machine Learning framework that can solve the inverse problem of Reinforcement Learning (RL). Basically, IRL is about learning from humans. Inverse reinforcement learning is the field of learning an agent’s objectives, values, or rewards by observing its behavior.

Before getting into further details of IRL, let us recap RL.
Reinforcement learning is an area of Machine Learning (ML) that takes suitable actions to maximize rewards. The goal of reinforcement learning algorithms is to find the best possible action to take in a specific situation.

Challenges in RL

One of the hardest challenges in many reinforcement learning tasks is that it is often difficult to find a good reward function which is both learnable (i.e. rewards happen early and often enough) and correct (i.e. leads to the desired outcomes). Inverse reinforcement learning aims to deal with this problem by learning a reward function based on observations of expert behavior.

What distinguishes Inverse Reinforcement Learning from Reinforcement Learning?

In RL, our agent is provided with a reward function which, whenever it executes an action in some state, provides feedback about the agent’s performance. This reward function is used to obtain an optimal policy, one where the expected future reward (discounted by how far away it will occur) is maximal.

In IRL, the setting is (as the name suggests) inverse. We are now given some agent’s policy or a history of behavior and we try to find a reward function that explains the given behavior. Under the assumption that our agent acted optimally, i.e. always picks the best possible action for its reward function, we try to estimate a reward function that could have led to this behavior.

The biggest motivation for IRL

Maybe the biggest motivation for IRL is that it is often immensely difficult to manually specify a reward function for a task. So far, RL has been successfully applied in domains where the reward function is very clear. But in the real world, it is often not clear at all what the reward should be and there are rarely intrinsic reward signals such as a game score.

For example, consider we want to design an artificial intelligence for a self-driving car. A simple approach would be to create a reward function that captures the desired behavior of a driver, like stopping at red lights, staying off the sidewalk, avoiding pedestrians, and so on. In real life, this would require an exhaustive list of every behavior we’d want to consider, as well as a list of weights describing how important each behavior is.

Instead, in the IRL framework, the task is to take a set of human-generated driving data and extract an approximation of that human’s reward function for the task. Of course, this approximation necessarily deals with a simplified model of driving. Still, much of the information necessary for solving a problem is captured within the approximation of the true reward function. Since it quantifies how good or bad certain actions are. Once we have the right reward function, the problem is reduced to finding the right policy and can be solved with standard reinforcement learning methods.

For our self-driving car example, we’d be using human driving data to automatically learn the right feature weights for the reward. Since the task is described completely by the reward function, we do not even need to know the specifics of the human policy, so long as we have the right reward function to optimize. In the general case, algorithms that solve the IRL problem can be seen as a method for leveraging expert knowledge to convert a task description into a compact reward function.

Conclusion

The foundational methods of inverse reinforcement learning can achieve their results by leveraging information obtained from a policy executed by a human expert. However, in the long run, the goal is for machine learning systems to learn from a wide range of human data and perform tasks that are beyond the abilities of human experts.

References

About the Author

Naresh is a part of Location Zero at GAVS as an AI/ML solutions developer. His focus is on solving problems leveraging AI/ML. He strongly believes in making success as an habit rather than considering it a destination. In his free time, he likes to spend time with his pet dogs and likes sketching and gardening.

Machine Learning: Building Clustering Algorithms

Gireesh Sreedhar KP


Clustering is a widely-used Machine Learning (ML) technique. Clustering is an Unsupervised ML algorithm that is built to learn patterns from input data without any training, besides being able of processing data with high dimensions. This makes clustering the method of choice to solve a wide range and variety of ML problems.

Since clustering is widely used, for Data Scientists and ML Engineer’s it is critical to understand how to practically build clustering algorithms even though many of us have a high-level understanding of clustering. Let us understand the approach to build a clustering algorithm from scratch.

What is Clustering and how does it work?

Clustering is finding groups of objects (data) such that objects in the same group will be similar (related) to one another and different from (unrelated to) objects in other groups.

Clustering works on the concept of Similarity/Dissimilarity between data points. The higher similarity between data points, the more likely these data points will belong to the same cluster and higher the dissimilarity between data points, the more likely these data points will be kept out of the same cluster.

Similarity is the numerical measure of how alike two data objects are. Similarity will be higher when objects are more alike. Dissimilarity is the numerical measure of how different two data objects. Dissimilarity is lower when objects are more alike.

We create a ‘Dissimilarity Matrix’ (also called Distance Matrix) as an input to a clustering algorithm, where the dissimilarity matrix gives algorithm the notion of dissimilarity between objects. We build a dissimilarity matrix for each attribute of data considered for clustering and then combine the dissimilarity matrix for each data attribute to form an overall dissimilarity matrix. The dissimilarity matrix is an NxN square matrix where N is the number of data points considered for clustering and each element of the NxN square matrix gives dissimilarity between two objects.

Building Clustering Algorithm

Building a clustering algorithm involve the following:

  • Selection of most suited clustering techniques and algorithms to solve the problem. This step needs close collaboration among SMEs, business users, data scientists, and ML engineers. Based on inputs and data study, a possible list of algorithms (one or more) is selected for modeling and development along with tuning parameters are decided (to give algorithm more flexibility for tuning and learning from SME).
  • The selection of data attributes for the formulation of the dissimilarity matrix and methodology for the formation of the dissimilarity matrix (discussed later).
  • Building algorithms and doing the Design of experiments to select the best-suited algorithm and algorithm parameters for implementation.
  • Implementation of algorithm and fine-tuning of parameters as required.

Building a Dissimilarity matrix:

There are different approaches to build a dissimilarity matrix, here we consider building a dissimilarity matrix containing the distance (called Distance Matrix) between data objects (another alternative approach is to feed in coordinate points and let the algorithm compute distance). Let us consider a group of N data objects to be clustered based on three data attributes of each data object. The steps for building a Distance matrix are:

Build a Distance matrix for individual data attributes. Here we build three individual distance matrices (one for each attribute) containing distance between data objects calculated for each attribute. The data is always scaled between [0,1] using one of the standard normalization methods such as Min-Max Scalar. Here is how the distance matrix for an attribute looks like.

Properties of Distance Matrix:

  1. Distance Matrix is NxN square matrix (N – number of objects in clustering space)
  2. Matrix is symmetric with diagonal as zero (zero diagonal as distance of an object from itself is zero)
  3. For categorical data, distance between two points = 0, if both are same; =1 otherwise
  4. For numeric/ordered data, distance between two points = difference between scaled attribute values of two points.

Build Complete Distance matrix. Here we build a complete distance matrix combining distance matrix of individual attributes forming the input for clustering algorithm.

Complete distance matrix = (element-wise sum of individual attribute level matrix)/3;

Generalized Complete distance matrix = (element-wise sum of individual attribute level matrix)/M, where M is the number of attribute level matrix formed.

Considerations for the selection of clustering algorithms:

Before the selection of a clustering algorithm, the following considerations need to be evaluated to identify the right clustering algorithms for the given problem.

  • Partition criteria: Single Level vs hierarchical portioning
  • Separation of clusters: Exclusive (one data point belongs to only one class) vs non-exclusive (one data point can belong to more than one class)
  • Similarity measures: Distance-based vs Connectivity-based
  • Clustering space: Full space (used when low dimension data is processed) vs Subspace (used when high dimension data is processed, where only subspace can be processed and interesting clustering can be formed)
  • Attributes processing: Ability to deal with different types of attributes: Numerical, Categorical, Text, Media, a combination of data types in inputs
  • Discovery of clusters: Ability to form a predefined number of clusters or an arbitrary number of clusters
  • Ability to deal with noise in data
  • Scalability to deal with huge volumes of data, high dimensionality, incremental, or streaming data.
  • Ability to deal with constraints on user preference and domain requirements.

Application of Clustering

There are broadly two applications of clustering.

As an ML tool to get insight into data. Like building Recommendation Systems or Customer segmentation by clustering like-minded users or similar products, Social network analysis, Biological data analysis like Gene/Protein sequence analysis, etc.

As a pre-processing or intermediate step for other classes of algorithms. Like some Pattern-mining algorithms use clustering to group patterns mined and select most representative patterns instead of selecting entire patterns mined.

Conclusion

Building ML algorithm is teamwork with a team consisting of SMEs, users, data scientists, and ML engineers, each playing their part for success. The article gives steps to build a clustering algorithm, this can be used as reference material while attempting to build your algorithm.

About the Author:

Gireesh is a part of the projects run in collaboration with IIT Madras for developing AI solutions and algorithms. His interest includes Data Science, Machine Learning, Financial markets, and Geo-politics. He believes that he is competing against himself to become better than who he was yesterday. He aspires to become a well-recognized subject matter expert in the field of Artificial Intelligence.

Assess Your Organization’s Maturity in Adopting AIOps

Artificial Intelligence for IT operations (AIOps) is adopted by organizations to deliver tangible Business Outcomes. These business outcomes have a direct impact on companies’ revenue and customer satisfaction.

A survey from AIOps Exchange 2019, reports that 84% of Business Owners who attended the survey, confirmed that they are actively evaluating AIOps to be adopted in their organizations.

So, is AIOps just automation? Absolutely NOT!!

Artificial Intelligence for IT operations implies the implementation of true Autonomous Artificial Intelligence in ITOps, which needs to be adopted as an organization-wide strategy. Organizations will have to assess their existing landscape, processes, and decide where to start. That is the only way to achieve the true implementation of AIOps.

Every organization trying to evaluate AIOps as a strategy should read through this article to understand their current maturity, and then move forward to reach the pinnacle of Artificial Intelligence in IT Operations.

The primary Success Factor in adopting AIOps is derived from the Business Outcomes the organization is trying to achieve by implementing AIOps –that is the only way to calculate ROI.

There are 4 levels of Maturity in AIOps adoption. Based on our experience in developing an AIOps platform and implementing the platform across multiple industries, we have arrived at these 4 levels. Assessing an organization against each of these levels helps in achieving the goal of TRUE Artificial Intelligence in IT Operations.

Level 1: Knee-jerk

Events, logs are generated in silos and collected from various applications and devices in the infrastructure. These are used to generate alerts that are commissioned to command centres to escalate as per the SOPs (standard operating procedures) defined. The engineering teams work in silos, not aware of the business impact that these alerts could potentially create. Here, operations are very reactive which could cost the organization millions of dollars.

Level 2: Unified

Have integrated all events, logs, and alerts into one central locale. ITSM process has been unified. This helps in breaking silos and engineering teams are better prepared to tackle business impacts. SOPs have been adjusted since the process is unified, but this is still reactive incident management.

Level 3: Intelligent

Machine Learning algorithms (either supervised or unsupervised) have been implemented on the unified data to derive insights. There are baseline metrics that are calibrated and will be used as a reference for future events. With more data, the metrics get richer. IT operations team can correlate incidents/events with business impacts by leveraging AI & ML. If Mean Time To Resolve (MTTR) an incident has been reduced by automated identification of the root cause, then the organization has attained level 3 maturity in AIOps.

Level 4: Predictive & Autonomous

The pinnacle of AIOps is level 4. If incidents and performance degradation of applications can be predicted by leveraging Artificial Intelligence, it implies improved application availability. Autonomousremediation bots can be triggered spontaneously based on the predictive insights, to fix incidents that are prone to happen in the enterprise. Level 4 is a paradigm shift in IT operations – moving operations entirely from being reactive, to becoming proactive.

Conclusion:

As IT operations teams move up each level, the essential goal to keep in mind is the long-term strategy that needs to be attained by adopting AIOps. Artificial Intelligence has matured over the past few decades, and it is up to AIOps platforms to embrace it effectively. While choosing an AIOps platform, measure the maturity of the platform’s artificial intelligent coefficient.

About the Author:

Anoop Aravindakshan (Principal Consultant Manager) at GAVS Technologies.


An evangelist of Zero Incident FrameworkTM, Anoop has been a part of the product engineering team for long and has recently forayed into product marketing. He has over 14 years of experience in Information Technology across various verticals, which include Banking, Healthcare, Aerospace, Manufacturing, CRM, Gaming, and Mobile.

Prediction for Business Service Assurance

Artificial Intelligence for IT operations or AIOps has exploded over the past few years. As more and more enterprises set about their digital transformation journeys, AIOps becomes imperative to keep their businesses running smoothly. 

AIOps uses several technologies like Machine Learning and Big Data to automate the identification and resolution of common Information Technology (IT) problems. The systems, services, and applications in a large enterprise produce volumes of log and performance data. AIOps uses this data to monitor the assets and gain visibility into the behaviour and dependencies among these assets.

According to a Gartner publication, the adoption of AIOps by large enterprises would rise to 30% by 2023.

ZIF – The ideal AIOps platform of choice

Zero Incident FrameworkTM (ZIF) is an AIOps based TechOps platform that enables proactive detection and remediation of incidents helping organizations drive towards a Zero Incident Enterprise™.

ZIF comprises of 5 modules, as outlined below.

At the heart of ZIF, lies its Analyze and Predict (A&P) modules which are powered by Artificial Intelligence and Machine Learning techniques. From the business perspective, the primary goal of A&P would be 100% availability of applications and business processes.

Let us understand more about thePredict module of ZIF.

Predictive Analytics is one of the main USP of the ZIF platform. ZIF encompassesSupervised, Unsupervised and Reinforcement Learning algorithms for realization of various business use cases (as shown below).

How does the Predict Module of ZIF work?

Through its data ingestion capabilities, the ZIF platform can receive and process all types of data (both structured and unstructured) from various tools in the enterprise. The types of data can be related to alerts, events, logs, performance of devices, relations of devices, workload topologies, network topologies etc. By analyzing all these data, the platform predicts the anomalies that can occur in the environment. These anomalies get presented as ‘Opportunity Cards’ so that suitable action can be taken ahead of time to eliminate any undesired incidents from occurring. Since this is ‘Proactive’ and not ‘Reactive’, it brings about a paradigm shift to any organization’s endeavour to achieve 100% availability of their enterprise systems and platforms. Predictions are done at multiple levels – application level, business process level, device level etc.

Sub-functions of Prediction Module

How does the Predict module manifest to enterprise users of the platform?

Predict module categorizes the opportunity cards into three swim lanes.

  1. Warning swim lane – Opportunity Cards that have an “Expected Time of Impact” (ETI) beyond 60 minutes.
  2. Critical swim lane – Opportunity Cards that have an ETI within 60 minutes.
  3. Processed / Lost– Opportunity Cards that have been processed or lost without taking any action.

Few of the enterprises that realized the power of ZIF’s Prediction Module

  • A manufacturing giant in the US
  • A large non-profit mental health and social service provider in New York
  • A large mortgage loan service provider in the US
  • Two of the largest private sector banks in India

For more detailed information on GAVS’ Analyze, or to request a demo please visithttps://zif.ai/products/predict/

References:https://www.gartner.com/smarterwithgartner/how-to-get-started-with-aiops/

About the Author:

Vasudevan Gopalan

Vasu heads Engineering function for A&P. He is a Digital Transformation leader with ~20 years of IT industry experience spanning across Product Engineering, Portfolio Delivery, Large Program Management etc. Vasu has designed and delivered Open Systems, Core Banking, Web / Mobile Applications etc.

Outside of his professional role, Vasu enjoys playing badminton and focusses on fitness routines.

Discover, Monitor, Analyze & Predict COVID-19

Uber, the world’s largest taxi company, owns no vehicles. Facebook, the world’s most popular media owner, creates no content. Alibaba, the most valuable retailer, has no inventory. Netflix, the world’s largest movie house, own no cinemas. And Airbnb, the world’s largest accommodation provider, owns no real estate. Something interesting is happening.”

– Tom Goodwin, an executive at the French media group Havas.

This new breed of companies is the fastest growing in history because they own the customer interface layer. It is the platform where all the value and profit is. “Platform business” is a more wholesome termfor this model for which data is the fuel; Big Data & AI/ML technologies are the harbinger of new waves of productivity growth and innovation.

With Big data and AI/ML is making a big difference in the area of public health, let’s see how it is helping us tackle the global emergency of coronavirus formally known as COVID-19.

“With rapidly spreading disease, a two-week lag is an eternity.”

DISCOVERING/ DETECTING

Chinese technology giant Alibaba has developed an AI system for detecting the COVID-19 in CT scans of patients’ chests with 96% accuracy against viral pneumonia cases. It only takes 20 seconds for the AI to decide, whereas humans generally take about 15 minutes to diagnose the illness as there can be upwards of 300 images to evaluate.The system was trained on images and data from 5,000 confirmed coronavirus cases and has been tested in hospitals throughout China. Per a report, at least 100 healthcare facilities are currently employing Alibaba’s AI to detect COVID-19.

Ping An Insurance (Group) Company of China, Ltd (Ping An) aims to address the issue of lack of radiologists by introducing the COVID-19 smart image-reading system. This image-reading system can read the huge volumes of CT scans in epidemic areas.

Ping An Smart Healthcare uses clinical data to train the AI model of the COVID-19 smart image-reading system. The AI analysis engine conducts a comparative analysis of multiple CT scan images of the same patient and measures the changes in lesions. It helps in tracking the development of the disease, evaluation of the treatment and in prognosis of patients.Ultimately it assists doctors to diagnose, triage and evaluate COVID-19 patients swiftly and effectively.

Ping An Smart Healthcare’s COVID-19 smart image-reading system also supports AI image-reading remotely by medical professionals outside the epidemic areas.Since its launch, the smart image-reading system has provided services to more than 1,500 medical institutions. More than 5,000 patients have received smart image-reading services for free.

The more solutions the better. At least when it comes to helping overwhelmed doctors provide better diagnoses and, thus, better outcomes.

MONITORING

  • AI based Temperature monitoring & scanning

In Beijing, China, subway passengers are being screened for symptoms of coronavirus, but not by health authorities. Instead, artificial intelligence is in-charge.

Two Chinese AI giants, Megvii and Baidu, have introduced temperature-scanning. They have implemented scanners to detect body temperature and send alerts to company workers if a person’s body temperature is high enough to constitute a fever.

Megvii’s AI system detects body temperatures for up to 15 people per second andup to 16 feet. It monitors as many as 16 checkpoints in a single station. The system integrates body detection, face detection, and dual sensing via infrared cameras and visible light. The system can accurately detect and flag high body temperature even when people are wearing masks, hats, or covering their faces with other items. Megvii’s system also sends alerts to an on-site staff member.

Baidu, one of the largest search-engine companies in China, screens subway passengers at the Qinghe station with infrared scanners. It also uses a facial-recognition system, taking photographs of passengers’ faces. If the Baidu system detects a body temperature of at least 99-degrees Fahrenheit, it sends an alert to the staff member for another screening. The technology can scan the temperatures of more than 200 people per minute.

  • AI based Social Media Monitoring

An international team is using machine learning to scour through social media posts, news reports, data from official public health channels, and information supplied by doctors for warning signs of the virus across geographies.The program is looking for social media posts that mention specific symptoms, like respiratory problems and fever, from a geographic area where doctors have reported potential cases. Natural language processing is used to parse the text posted on social media, for example, to distinguish between someone discussing the news and someone complaining about how they feel.

The approach has proven capable of spotting a coronavirus needle in a haystack of big data. This technique could help experts learn how the virus behaves. It may be possible to determine the age, gender, and location of those most at risk quicker than using official medical sources.

PREDICTING

Data from hospitals, airports, and other public locations are being used to predict disease spread and risk. Hospitals can also use the data to plan for the impact of an outbreak on their operations.

Kalman Filter

Kalman filter was pioneered by Rudolf Emil Kalman in 1960, originally designed and developed to solve the navigation problem in the Apollo Project. Since then, it has been applied to numerous cases such as guidance, navigation, and control of vehicles, computer vision’s object tracking, trajectory optimization, time series analysis in signal processing, econometrics and more.

Kalman filter is a recursive algorithm which uses time-series measurement over time, containing statistical noise and produce estimations of unknown variables.

For the one-day prediction Kalman filter can be used, while for the long-term forecast a linear model is used where its main features are Kalman predictors, infected rate relative to population, time-depended features, and weather history and forecasting.

The one-day Kalman prediction is very accurate and powerful while a longer period prediction is more challenging but provides a future trend.Long term prediction does not guarantee full accuracy but provides a fair estimation following the recent trend. The model should re-run daily to gain better results.

GitHub Link: https://github.com/Rank23/COVID19

ANALYZING

The Center for Systems Science and Engineering at Johns Hopkins University has developed an interactive, web-based dashboard that tracks the status of COVID-19 around the world. The resource provides a visualization of the location and number of confirmed COVID-19 cases, deaths and recoveries for all affected countries.

The primary data source for the tool is DXY, a Chinese platform that aggregates local media and government reports to provide COVID-19 cumulative case totals in near real-time at the province level in China and country level otherwise. Additional data comes from Twitter feeds, online news services and direct communication sent through the dashboard. Johns Hopkins then confirms the case numbers with regional and local health departments. This kind of Data analytics platform plays a pivotal role in addressing the coronavirus outbreak.

All data from the dashboard is also freely available in the following GitHub repository.

GitHub Link:https://bit.ly/2Wmmbp8

Mobile version: https://bit.ly/2WjyK4d

Web version: https://bit.ly/2xLyT6v

Conclusion

One of AI’s core strengths when working on identifying and limiting the effects of virus outbreaks is its incredibly insistent nature. AIsystems never tire, can sift through enormous amounts of data, and identify possible correlations and causations that humans can’t.

However, there are limits to AI’s ability to both identify virus outbreaks and predict how they will spread. Perhaps the best-known example comes from the neighboring field of big data analytics. At its launch, Google Flu Trends was heralded as a great leap forward in relation to identifying and estimating the spread of the flu—until it underestimated the 2013 flu season by a whopping 140 percent and was quietly put to rest.Poor data quality was identified as one of the main reasons Google Flu Trends failed. Unreliable or faulty data can wreak havoc on the prediction power of AI.

References:

About the Author:

Bargunan Somasundaram

Bargunan Somasundaram

Bargunan is a Big Data Engineer and a programming enthusiast. His passion is to share his knowledge by writing his experiences about them. He believes “Gaining knowledge is the first step to wisdom and sharing it is the first step to humanity.”

AI in Healthcare

The Healthcare Industry is going through a quiet revolution. Factors like disease trends, doctor demographics, regulatory policies, environment, technology etc. are forcing the industry to turn to emerging technologies like AI, to help adapt to the pace of change. Here, we take a look at some key use cases of AI in Healthcare.

Medical Imaging

The application of Machine Learning (ML) in Medical Imaging is showing highly encouraging results. ML is a subset of AI, where algorithms and models are used to help machines imitate the cognitive functions of the human brain and to also self-learn from their experiences.

AI can be gainfully used in the different stages of medical imaging- in acquisition, image reconstruction, processing, interpretation, storage, data mining & beyond. The performance of ML computational models improves tremendously as they get exposed to more & more data and this foundation on colossal amounts of data enables them to gradually better humans at interpretation. They begin to detect anomalies not perceptible to the human eye & not discernible to the human brain!

What goes hand-in-hand with data, is noise. Noise creates artifacts in images and reduces its quality, leading to inaccurate diagnosis. AI systems work through the clutter and aid noise- reduction leading to better precision in diagnosis, prognosis, staging, segmentation and treatment.

At the forefront of this use case is Radio genomics- correlating cancer imaging features and gene expression. Needless to say, this will play a pivotal role in cancer research.

Drug Discovery

Drug Discovery is an arduous process that takes several years from the start of research to obtaining approval to market. Research involves laboring through copious amounts of medical literature to identify the dynamics between genes, molecular targets, pathways, candidate compounds. Sifting through all of this complex data to arrive at conclusions is an enormous challenge. When this voluminous data is fed to the ML computational models, relationships are reliably established. AI powered by domain knowledge is slashing down time & cost involved in new drug development.

Cybersecurity in Healthcare

Data security is of paramount importance to Healthcare providers who need to ensure confidentiality, integrity, and availability of patient data. With cyberattacks increasing in number and complexity, these formidable threats are giving security teams sleepless nights! The main strength of AI is its ability to curate massive quantities of data- here threat intelligence, nullify the noise, provide instant insights & self-learn in the process. Predictive & Prescriptive capabilities of these computational models drastically reduces response time.

Virtual Health assistants

Virtual Health assistants like Chatbots, give patients 24/7 access to critical information, in addition to offering services like scheduling health check-ups or setting up appointments. AI- based platforms for wearable health devices and health apps come armed with loads of features to monitor health signs, daily activities, diet, sleep patterns etc. and provide alerts for immediate action or suggest personalized plans to enable healthy lifestyles.

AI for Healthcare IT Infrastructure

Healthcare IT Infrastructure running critical applications that enable patient care, is the heart of a Healthcare provider. With dynamically changing IT landscapes that are distributed, hybrid & on-demand, IT Operations teams are finding it hard to keep up. Artificial Intelligence for IT Ops (AIOps) is poised to fundamentally transform the Healthcare Industry. It is powering Healthcare Providers across the globe, who are adopting it to Automate, Predict, Remediate & Prevent Incidents in their IT Infrastructure. GAVS’ Zero Incident FrameworkTM (ZIF) – an AIOps Platform, is a pure-play AI platform based on unsupervised Machine Learning and comes with the full suite of tools an IT Infrastructure team would need. Please watch this video to learn more.

READ ALSO OUR NEW UPDATES

Data Migration Powered by RPA

What is RPA?

Robotic Process Automation(RPA) is the use of specialized software to automate repetitive tasks. Offloading mundane, tedious grunt work to the software robots frees up employee time to focus on more cerebral tasks with better value-add. So, organizations are looking at RPA as a digital workforce to augment their human resources. Since robots excel at rules-based, structured, high-volume tasks, they help improve business process efficiency, reduce time and operating costs due to the reliability, consistency & speed they bring to the table.

Generally, RPA is low-cost, has faster deployment cycles as compared to other solutions for streamlining business processes, and can be implemented easily. RPA can be thought of as the first step to more transformative automations. With RPA steadily gaining traction, Forrester predicts the RPA Market will reach $2.9 Billion by 2021.

Over the years, RPA has evolved from low-level automation tasks like screen scraping to more cognitive ones where the bots can recognize and process text/audio/video, self-learn and adapt to changes in their environment. Such Automation supercharged by AI is called Intelligent Process Automation.

Use Cases of RPA

Let’s look at a few areas where RPA has resulted in a significant uptick in productivity.

Service Desk – One of the biggest time-guzzlers of customer service teams is sifting through scores ofemails/phone calls/voice notes received every day. RPA can be effectively used to scour them, interpret content, classify/tag/reroute or escalate as appropriate, raise tickets in the logging system and even drive certain routine tasks like password resets to closure!

Claims Processing – This can be used across industries and result in tremendous time and cost savings.This would include interpreting information in the forms, verification of information, authentication of e-signatures & supporting documents, and first level approval/rejection based on the outcome of the verification process.

Data Transfers – RPA is an excellent fit for tasks involving data transfer, to either transfer data on paperto systems for digitization, or to transfer data between systems during data migration processes.

Fraud Detection – Can be a big value-add for banks, credit card/financial services companies as a first lineof defense, when used to monitor account or credit card activity and flag suspicious transactions.

Marketing Activities – Can be a very resourceful member of the marketing team, helping in all activities

right from lead gen, to nurturing leads through the funnel with relevant, personalized, targeted content

delivery.

Reporting/Analytics

RPA can be used to generate reports and analytics on predefined parameters and KPIs, that can help

give insights into the health of the automated process and the effectiveness of the automation itself.

The above use cases are a sample list to highlight the breadth of their capabilities. Here are some industry-specific tasks where RPA can play a significant role.

Banks/Financial Services/Accounting Firms – Account management through its lifecycle, Cardactivation/de-activation, foreign exchange payments, general accounting, operational accounting, KYC digitization

Manufacturing, SCM –Vendor handling, Requisition to Purchase Order, Payment processing, Inventorymanagement

HR – Employee lifecycle management from On-boarding to Offboarding, Resume screening/matching

Data Migration Triggers & Challenges

A common trigger for data migration is when companies want to sunset their legacy systems or integrate them with their new-age applications. For some, there is a legal mandate to retain legacy data, as with patient records or financial information, in which case these organizations might want to move the data to a lower-cost or current platform and then decommission the old system.

This is easier said than done. The legacy systems might have their data in flat files or non-relational DBs or may not have APIs or other standards-based interfaces, making it very hard to access the data. Also, they might be based on old technology platforms that are no longer supported by the vendor. For the same reasons, finding resources with the skillset and expertise to navigate through these systems becomes a challenge.

Two other common triggers for data migrations are mergers/acquisitions which necessitate the merging of systems and data and secondly, digital transformation initiatives. When companies look to modernize their IT landscape, it becomes necessary to standardize applications and remove redundant ones across application silos. Consolidation will be required when there are multiple applications for the same use cases in the merged IT landscape.

Most times such data migrations can quickly spiral into unwieldy projects, due to the sheer number, size, and variety of the systems and data involved, demanding meticulous design and planning. The first step would be to convert all data to a common format before transition to the target system which would need detailed data mappings and data cleansing before and after conversion, making it extremely complex, resource-intensive and expensive.

RPA for Data Migration

Structured processes that can be precisely defined by rules is where RPA excels. So, if the data migration process has clear definitions for the source and target data formats, mappings, workflows, criteria for rollback/commit/exceptions, unit/integration test cases and reporting parameters, half the battle is won. At this point, the software bots can take over!

Another hurdle in humans performing such highly repetitive tasks is mental exhaustion, which can lead to slowing down, errors and inconsistency. Since RPA is unfazed by volume, complexity or monotony, it automatically translates to better process efficiency and cost benefits. Employee productivity also increases because they are not subjected to mind-numbing work and can focus on other interesting tasks on hand. Since the software bots can be configured to create logfiles/reports/dashboards in any format, level of detail & propagation type/frequency, traceability, compliance, and complete visibility into the process are additional happy outcomes!

To RPA or not to RPA?

Well, while RPA holds a lot of promise, there are some things to keep in mind

  • Important to choose the right processes/use-cases to automate, else it could lead to poor ROI
  • Quality of the automation depends heavily on diligent design and planning
  • Integration challenges with other automation tools in the landscape
  • Heightened data security and governance concerns since it will have full access to the data
  • Periodic reviews required to ensure expected RPA behavior
  • Dynamic scalability might be an issue when there are unforeseen spikes in data or usage patterns
  • Lack of flexibility to adapt to changes in underlying systems/platforms could make it unusable

But like all other transformational initiatives, the success of RPA depends on doing the homework right, taking informed decisions, choosing the right vendor(s) and product(s) that align with your Business imperatives, and above all, a whole-hearted buy-in from the business, IT & Security teams and the teams that will be impacted by the RPA.

Analyze

Have you heard of AIOps?

Artificial intelligence for IT operations (AIOps) is an umbrella term for the application of Big Data Analytics, Machine Learning (ML) and other Artificial Intelligence (AI) technologies to automate the identification and resolution of common Information Technology (IT) problems. The systems, services and applications in a large enterprise produce immense volumes of log and performance data. AIOps uses this data to monitor the assets and gain visibility into the working behaviour and dependencies between these assets.

According to a Gartner study, the adoption of AIOps by large enterprises would rise to 30% by 2023.

ZIF – The ideal AIOps platform of choice

Zero Incident FrameworkTM (ZIF) is an AIOps based TechOps platform that enables proactive detection and remediation of incidents helping organizations drive towards a Zero Incident Enterprise™

ZIF comprises of 5 modules, as outlined below.

At the heart of ZIF, lies its Analyze and Predict (A&P) modules which are powered by Artificial Intelligence and Machine Learning techniques. From the business perspective, the primary goal of A&P would be 100% availability of applications and business processes.

Come, let us understand more about the Analyze function of ZIF.

With Analyzehaving a Big Data platform under its hood, volumes of raw monitoring data, both structured and unstructured, can be ingested and grouped to build linkages and identify failure patterns.

Data Ingestion and Correlation of Diverse Data

The module processes a wide range of data from varied data sources to break siloes while providing insights, exposing anomalies and highlighting risks across the IT landscape. It increases productivity and efficiency through actionable insights.

  • 100+ connectors for leading tools, environments and devices
  • Correlation and aggregation methods uncover patterns and relationships in the data

Noise Nullification

Eliminates duplicate incidents, false positives and any alerts that are insignificant. This also helps reduce the Mean-Time-To-Resolution and event-to-incident ratio.

  • Deep learning algorithms isolate events that have the potential to become incidents along with their potential criticality
  • Correlation and Aggregation methods group alerts and incidents that are related and needs a common remediation
  • Reinforcement learning techniques are applied to find and eliminate false positives and duplicates

Event Correlation

Data from various sources are ingested real-time into ZIF either by push or pull mechanism. As the data is ingested, labelling algorithms are run to label the data based on identifiers. The labelled data is passed through the correlation engine where unsupervised algorithms are run to mine the patterns. Sub-sequence mining algorithms help in identifying unique patterns from the data.

Unique patterns identified are clustered using clustering algorithms to form cases. Every case that is generated is marked by a unique case id. As part of the clustering process, seasonality aspects are checked from historical transactions to derive higher accuracy of correlation.

Correlation is done based on pattern recognition, helping to eliminate the need for relational CMDB from the enterprise. The accuracy of the correlation increases as patterns reoccur. Algorithms also can unlearn patterns based on the feedback that can be provided by actions taken on correlation. As these are unsupervised algorithms, the patterns are learnt with zero human intervention.

Accelerated Root Cause Analysis (RCA)

Analyze module helps in identifying the root causes of incidents even when they occur in different silos. Combination of correlation algorithms with unsupervised deep learning techniques aid in accurately nailing down the root causes of incidents/problems. Learnings from historical incidents are also applied to find root causes in real-time. The platform retraces the user journeys step-by-step to identify the exact point where an error occurs.

Customer Success Story – How ZIF’s A&P transformed IT Operations of a Manufacturing Giant

  • Seamless end-to-end monitoring – OS, DB, Applications, Networks
  • Helped achieve more than 50% noise reduction in 6 months
  • Reduced P1 incidents by ~30% through dynamic and deep monitoring
  • Achieved declining trend of MTTR and an increasing trend of Availability
  • Resulted in optimizingcommand centre/operations head count by ~50%
  • Resulted in ~80% reduction in operations TCO

For more detailed information on GAVS’ Analyze, or to request a demo please visit zif.ai/products/analyze

References: www.gartner.com/smarterwithgartner/how-to-get-started-with-aiops

ABOUT THE AUTHOR

Vasudevan Gopalan


Vasu heads Engineering function for A&P. He is a Digital Transformation leader with ~20 years of IT industry experience spanning across Product Engineering, Portfolio Delivery, Large Program Management etc. Vasu has designed and delivered Open Systems, Core Banking, Web / Mobile Applications etc.

Outside of his professional role, Vasu enjoys playing badminton and focusses on fitness routines.

READ ALSO OUR NEW UPDATES

CCPA for Healthcare

The California Consumer Privacy Act (CCPA) is a state statute intended to enhance consumer protection and data privacy rights of the residents of California, United States. It is widely considered one of the most sweeping consumer privacy laws, giving Californians the strongest data privacy rights in the U.S.

The focus of this article is CCPA as it applies to Healthcare. Let’s take a quick look at what CCPA is and then move onto its relevance for Healthcare entities. CCPA is applicable to any for-profit organization – regardless of whether it physically operates out of California – that interacts with, does business with and/or collects, processes or monetizes personal information of California residents AND meets at least one of these criteria: has annual gross revenue in excess of $25 million USD; collects or transacts with the personal information of 50,000 or more California consumers, households, or devices; earns 50% or more of its annual revenue by monetizing such data. CCPA also empowers California consumers with the rights to complete ownership; control; and security of their personal information and imposes new stringent responsibilities on businesses to enable these rights for their consumers.

Impact on Healthcare Companies

Companies directly or indirectly involved in the healthcare sector and dealing with medical information are regulated by the Confidentiality of Medical Information Act (CMIA) and the Health Insurance Portability and Accountability Act (HIPAA). CCPA does not supersede these laws & does not apply to ‘Medical Information (MI)’ as defined by CMIA, or to ‘Protected Health Information (PHI)’ as defined by HIPAA. CCPA also excludes de- identified data and information collected by federally-funded clinical trials, since such research studies are regulated by the ‘Common Rule’.

The focus of the CCPA is ‘Personal Information (PI)’ which means information that “identifies, relates to, describes, is capable of being associated with, or could reasonably be linked, directly or indirectly, with a particular consumer or household.” PI refers to data including but not limited to personal identifiers such as name, address, phone numbers, email ids, social security number; personal details relating to education, employment, family, finances; biometric information, geolocation, consumer activity like purchase history, product preferences; internet activity.

So, if CCPA only regulates personal information, are healthcare companies that are already in compliance with CMIA and HIPAA safe? Is there anything else they need to do?

Well, there is a lot that needs to be done! This only implies that such companies should continue to comply with those rules when handling Medical Information as defined by the CMIA, or Protected Health Information, as defined by HIPAA. They will still need to adhere to CCPA regulations for personal data that is outside of MI and PHI. This will include

employee personal information routinely obtained and processed by the company’s HR; those collected from websites, health apps, health devices, events; clinical studies that are not funded by the federal government; information of a CCPA-covered entity that is handled by a non-profit affiliate, to give a few examples.

There are several possibilities – some not so apparent – even in healthcare entities, for personal data collection and handling that would fall under the purview of CCPA. They need to take stock of the different avenues through which they might be obtaining/handling such data and prioritize CCPA compliance. Else, with the stringent CCPA regulations, they could quickly find themselves embroiled in class action lawsuits (which by the way, do not require proof of damage to the plaintiff) in case of data breaches, or statutory penalties of up to $7500 for each violation.

The good news is that since CCPA carves out a significant chunk of data that healthcare companies/those involved in healthcare-related functions collect and process, entities that are already complying with HIPAA and CMIA are well into the CCPA compliance journey. A peek into the kind of data CMIA & HIPAA regulate will help gauge what other data needs to be taken care of.

CMIA protects the confidentiality of Medical Information (MI) which is “individually identifiable information, in electronic or physical form, in possession of or derived from a provider of health care, health care service plan, pharmaceutical company, or contractor regarding a patient’s medical history, mental or physical condition, or treatment.”

HIPAA regulates how healthcare providers, health plans, and healthcare clearinghouses, referred to as ‘covered entities’ can use and disclose Protected Health Information (PHI), and requires these entities to enable protection of data privacy. PHI refers to individually identifiable medical information such as medical records, medical bills, lab tests, scans and the like. This also covers PHI in electronic form(ePHI). The privacy and security rule of HIPAA is also applicable to ‘business associates’ who provide services to the ‘coveredentities’ that involve the use or disclosure of PHI.

Two other types of data that are CCPA exempt are Research Data & De-Identified Data. As mentioned above, the ‘Common Rule’ applies only to federally-funded research studies, and the CCPA does not provide much clarity on exemption status for data from clinical trials that are not federally-funded.

And, although the CCPA does not apply to de-identified data, the definitions of de-identified data of HIPAA and CCPA slightly differ which makes it quite likely that de-identified data by HIPAA standards may not qualify under CCPA standards and therefore would not be exempt from CCPA regulations.

Compliance Approach

Taking measures to ensure compliance with regulations is cumbersome and labour-intensive, especially with the constantly evolving regulatory environment. Using this opportunity for a proactive, well-thought-out approach for comprehensive enterprise-wide data security and governance will be strategically wise since it will minimize the need for policy and process rehaul with each new regulation.

The most crucial step is a thorough assessment of the following:

  • Policies, procedures, workflows, entities relating to/involved in data collection, sharing and processing, in order to arrive at clear enterprise-wide data mapping; to determine what data, data activities, data policies would fall under the scope of CCPA; and to identify gaps and decide on prioritized action items for compliance.
  • Business processes, contracts, terms of agreement with affiliates, partners and third-party entities the company does business with, to understand CCPA applicability. In some cases,

HIPAA and CMIA may be applicable to only the healthcare-related business units, subjecting other business units to CCPA compliance.

  • Current data handling methods, not just its privacy & security. CCPA dictates that companies need to have mechanisms put in place to cater to CCPA consumer right to request all information relating to the personal data collected about them, right to opt-out of sale of their data, right to have their data deleted by the organization (which will extend to 3rd parties doing business with this organization as well).

Consumer Consent Management

With CCPA giving full ownership and control of personal data back to its owners, consent management mechanisms become the pivot of a successful compliance strategy. An effective mechanism will ensure proper administration and enforcement of consumer authorizations.

Considering the limitations of current market solutions for data privacy and security, GAVS has come up with its Blockchain-based Rhodium Framework (pending patent) for Customer Master Data Management and Compliance with Data Privacy Laws like CCPA.

You can get more details on CCPA in general and GAVS’ solution for true CCPA Compliance in our White Paper, Blockchain Solution for CCPA Compliance.

READ ALSO OUR NEW UPDATES

The Chatty Bots!

Chatbots can be loosely defined as software to simulate human conversation. They are widely used as textbots or voicebots in social media, in websites to provide the initial engagement with visitors, as part of  customer service/IT operations teams to provide tier 1 support round the clock and for various other organizational needs, as we’ll see later in the blog, in integration with enterprise tools/systems. Their prevalence can be attributed to how easy it has now become to get a basic chatbot up & running quickly, using the intuitive drag-drop interfaces of chatbot build tools. There are also many cloud-based free or low-cost AI platforms for building bots using the provided APIs. Most of these platforms also come with industry-specific content, add-on tools for analytics and more.

Rule-based chatbots can hold basic conversation with scripted ‘if/then’ responses for commonly raised issues/faqs, and redirect appropriately for queries beyond their scope. They use keyword matches to get relevant information from their datastore. Culturally, as we begin to accept and trust bots to solve problems and extend support; with companies beginning to see value in these digital resources; and with heavy investments in AI technologies, chatbots are gaining traction, and becoming more sophisticated. AI-led chatbots are way more complex than their rule-based counterparts and provide dynamically tailored, contextual responses based on the conversation and interaction history. Natural Language Processing capabilities give these chatbots the human-like skill to comprehend nuances of language and gauge the intent behind what is explicitly stated.    

The Artificial Neural Network(ANN) for Natural Language Processing(NLP) 

An ANN is an attempt at a tech equivalent of the human brain! You can find our blog on ANNs and Deep Learning here.

Traditional AI models are incapable of handling highly cognitive tasks like image recognition, image classification, natural language processing, speech recognition, text-speech conversion, tone analysis and the like. There has been a lot of success with Deep Learning approaches for such cerebral use cases. For NLP, handling the inherent complexities of language such as sentiment, ambiguity or insinuation, necessitates deeper networks and a lot of training with enormous amounts of data. Each computational layer of the network progressively extracts finer and more abstract details from the inputs, essentially adding value to the learnings from the previous layers. With each training iteration, the network adapts, auto-corrects and finetunes its weights using optimization algorithms, until it reaches a maturity level where it is almost always correct in spite of input vagaries. The USP of a deep network is that, armed with this knowledge gained from training, it is able to extract correlations & meaning from even unlabeled and unstructured data.

Different types of neural networks are particularly suited for different use cases. Recurrent Neural Networks(RNNs) are good for sequential data like text documents, audio and natural language. RNNs have a feedback mechanism where each neuron’s output is fed back as weighted input, along with other inputs. This gives them ‘memory’ implying they remember their earlier inputs, but with time the inputs get diluted by the presence of new data. A variant of the RNN helps solve this problem. Long Short Term Memory (LSTM) models have neurons(nodes) with gated cells that can regulate whether to ‘remember’ or ‘forget’ their previous inputs, thereby giving more control over what needs to be remembered for a long time versus what can be forgotten. For e.g.: it would help to ‘remember’ when parsing through a text document because the words and sentences are most likely related, but ‘forgetting’ would be better during the move from one text document to the next, since they are most likely unrelated.

The Chatbot Evolution

In the 2019 Gartner CIO Survey, CIOs identified chatbots as the main AI-based application used in their enterprises. “There has been a more than 160% increase in client interest around implementing chatbots and associated technologies in 2018 from previous years”, says Van Baker, VP Analyst at Gartner.

Personal & Business communication morphs into the quickest, easiest and most convenient mode of the time. From handwritten letters to emails to phone calls to SMSs to mere status updates on social media is how we now choose to interact. Mr. Baker goes on to say that with the increase of millennials in the workplace, and their  demand for instant, digital connections, they will have a large impact on how quickly organizations adopt the technology.

Due to these evolutionary trends, more organizations than we think, have taken a leap of faith and added these bots to their workforce. It is actually quite interesting to see how chatbots are being put to innovative use, either stand-alone or integrated with other enterprise systems.

Chatbots in the Enterprise

Customer service & IT service management(ITSM) are use cases through which chatbots gained entry into the enterprise. Proactive personalized user engagement, consistency and ease of interaction, round-the-clock availability & timely address of issues have lent themselves to operational efficiency, cost effectiveness and enhanced user experience. Chatbots integrated into ITSM help streamline service, automate workflow management, reduce MTTR, and provide always-on services. They also make it easier to scale during peak usage times since they reduce the need for customers to speak with human staff, and the need to augment human resources to handle the extra load. ChatOps is the use of chatbots within a group collaboration tool where they run between the tool and the user’s applications and automate tasks like providing relevant data/reports, scheduling meetings, emailing, and ease the collaborative process between siloed teams and processes, like in a DevOps environment where they double up as the monitoring and diagnostic tool for the IT landscape.

In E-commerce, chatbots can boost sales by taking the customer through a linear shopping experience from item search through purchase. The bot can make purchase suggestions based on customer preferences gleaned from product search patterns and order history.

In Healthcare, they seamlessly connect healthcare providers, consumers and information and ease access to each other. These bot assistants come in different forms catering to specific needs like personal health coach, companion bot to provide the much-needed conversational support for patients with Alzheimer’s, confidant and therapist for those suffering from depression, symptom-checker to provide initial diagnosis based on symptoms and enable remote text or video consultation with a doctor as required and so on.

Analytics provide insights but often not fast enough for the CXO. Decision-making becomes quicker when executives can query a chatbot to get answers, rather than drilling through a dashboard. Imagine getting immediate responses to requests like Which region in the US has had the most sales during Thanksgiving? Send out a congratulatory note to the leadership in that region. Which region has had the poorest sales? Schedule a meeting with the team there. Email me other related reports of this region. As can be seen here, chatbots work in tandem with other enterprise tools like analytics tools, calendar and email to make such fascinating forays possible.

Chatbots can handle the mundane tasks of Employee Onboarding, such as verification of mandatory documents, getting required forms filled, directing them to online new-hire training and ensuring completion.

When integrated with IoT devices, they can help in Inventory Management by sending out notifications when it’s time to restock a product, tracking shipment of new orders and alerting on arrival.

Chatbots can offer Financial Advice by recommending investment options based on transactional history, current investments or amounts idling in savings accounts, alerting customer to market impact on current portfolio and so much more.

As is evident now, the possibilities of such domain-specific chatbots are endless, and what we have seen is just a sampling of their use cases!

Choosing the Right Solution

The chatbot vendor market is crowded, making it hard for buyers to fathom where to even begin. The first step is an in-depth evaluation of the company’s unique needs, constraints, main use cases and enterprise readiness. The next big step is to decide between off-the shelf or in-house solutions. An in-house build will be an exact fit to needs, but it might be difficult to get long-term management buy-in to invest in related AI technologies, compute power, storage, ongoing maintenance and a capable data science team. Off-the-shelf solutions need a lot of scrutiny to gauge if the providers are specialists who can deliver enterprise-grade chatbots. Some important considerations:

The solution should (be);

Platform & Device Agnostic so it can be built once and deployed anywhere

Have good Integration Capabilities with tools, applications and systems in the enterprise

Robust with solid security and compliance features

Versatile to handle varied use cases

Adaptable to support future scaling

Extensible to enable additional capabilities as the solution matures, and to leverage innovation to provide advanced features such as multi-language support, face recognition, integration with VR, Blockchains, IoT devices

Have a Personality! Bots with a personality add a human-touch that can be quite a differentiator. Incorporation of soft features such as natural conversational style, tone, emotion, and a dash of humor can give an edge over the competition.

About the Author:

Priya is part of the Marketing team at GAVS. She is passionate about Technology, Indian Classical Arts, Travel and Yoga. She aspires to become a Yoga Instructor some day!